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Abstract
Aim The aim of this study is to apply a novel hybrid framework incorporating a Vision Transformer (ViT) and 
bidirectional long short-term memory (Bi-LSTM) model for classifying physical activity intensity (PAI) in adults using 
gravity-based acceleration. Additionally, it further investigates how PAI and temporal window (TW) impacts the 
model’ s accuracy.

Method This research used the Capture-24 dataset, consisting of raw accelerometer data from 151 participants 
aged 18 to 91. Gravity-based acceleration was utilised to generate images encoding various PAIs. These images were 
subsequently analysed using the ViT-BiLSTM model, with results presented in confusion matrices and compared 
with baseline models. The model’s robustness was evaluated through temporal stability testing and examination of 
accuracy and loss curves.

Result The ViT-BiLSTM model excelled in PAI classification task, achieving an overall accuracy of 98.5% ± 1.48% across 
five TWs-98.7% for 1s, 98.1% for 5s, 98.2% for 10s, 99% for 15s, and 98.65% for 30s of TW. The model consistently 
exhibited superior accuracy in predicting sedentary (98.9% ± 1%) compared to light physical activity (98.2% ± 2%) 
and moderate-to-vigorous physical activity (98.2% ± 3%). ANOVA showed no significant accuracy variation across 
PAIs (F = 2.18, p = 0.13) and TW (F = 0.52, p = 0.72). Accuracy and loss curves show the model consistently improves its 
performance across epochs, demonstrating its excellent robustness.

Conclusion This study demonstrates the ViT-BiLSTM model’s efficacy in classifying PAI using gravity-based 
acceleration, with performance remaining consistent across diverse TWs and intensities. However, PAI and TW could 
result in slight variations in the model’s performance. Future research should concern and investigate the impact of 
gravity-based acceleration on PAI thresholds, which may influence model’s robustness and reliability.
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Introduction
The use of accelerometer-based measurements for physi-
cal activity (PA) has become increasingly prevalent, as 
it reduces biases inherent in self-reported data and pro-
vides more accurate and insightful information on PA [1, 
2]. However, this method presents challenges, particu-
larly in classifying different intensities of PA [3–5]. Dif-
ferent intensities of PA can have varying effects on health. 
For instance, prolonged periods of light PA (LPA) and 
moderate-to-vigorous PA (MVPA) have different impacts 
on cardiovascular health in adults [6, 7]. Thus, accurately 
capturing different intensities is crucial for understand-
ing their health implications [8–10].

Traditionally, accelerometer data processing meth-
ods estimate PA intensity using cut-point that based on 
metabolic equivalents (METs), such as LPA <3 METs; 
MPA = 3–5.99 METs; VPA ≥6 METs [11]. Alternatively, 
studies have used counts, which represent the cumula-
tive acceleration signals within a specified time interval 
(epoch), typically filtered to remove noise and high-fre-
quency vibrations, and expressed as an aggregate value 
for each epoch [12]. Within the adults population, vari-
ous studies use different step count thresholds to clas-
sify LPA, MVPA, and sedentary (SB), such as, for MVPA, 
thresholds include ≥1952 counts per minute [12], and 
≥2020 counts/min [13]. Using different cut points for 
the same population and the same intensity complicates 
comparative analyses. Furthermore, METs-based inten-
sity estimation can be affected by individual differences, 
environmental factors, and device placement, leading to 
inaccuracies [14].

Recent research has explored machine learning meth-
ods to overcome the limitations of cut points in classify-
ing PA intensities [15–18]. Previous work predominantly 
relied on traditional machine learning algorithms like 
k-Nearest Neighbours (k–NN), Support Vector Machine 
(SVM), Random Forest (RF), hidden semi-Markov mod-
els for activity recognition [17, 19, 20]. These machine 
learning methods have shown good performance and 
efficiency in classifying PA intensities. However, they 
depend on manually designed and selected features, 
which are time-consuming and may miss important fea-
tures [9, 16, 21]. For example, Chong, Tjurin [22] used 
filter, wrapper, and embedded methods to find suitable 
feature subsets for activity prediction. While wrappers 
can find better feature subsets, they are computationally 
expensive and prone to overfitting. Filter and wrapper 
methods also struggle to capture complex feature inter-
actions. Consequence, convolutional neural networks 
(CNNs) have emerged as a powerful alternative due to 
their ability to automatically learn and extract relevant 
features from raw data without manual intervention. This 
characteristic enables CNNs to capture complex patterns 

and interactions within the data that traditional machine 
learning methods might miss.

The study by Nawaratne, Alahakoon [16] represents 
an advancement in the field of accelerometer-based 
PA by leveraging deep learning, the research provides 
a more accurate, user-friendly approach to predicting 
energy expenditure and physical activity intensity in free-
living conditions. Specifically, the Convolutional Neu-
ral Network with custom feature extraction models for 
Untrained Group results shows that SB achieved correct 
predictions of 85.4%, LPA achieved correct predictions of 
84.2% and MVPA achieved correct predictions of 63.1%. 
The study by Widianto, Sugiarto [21], applied a CNN 
model to classify PAI in adults wearing five accelerome-
ters. The model achieved accuracies of 97% for MPA, 95% 
for LPA, and 98% for SD. However, previous studies were 
conducted in laboratory settings. The CNN model, which 
demonstrated excellent performance, required partici-
pants to wear five accelerometers. This setup reduces the 
feasibility of capturing physical activity in natural envi-
ronments. Moreover, these studies rely on unidimen-
sional time-series data, potentially failing to capture the 
global information during activities.

Recently, Farrahi, Muhammad [15] applied AccNet24 
framework that has laid the groundwork for analysing 
24-h PA behaviours using wrist-worn accelerometer data 
in free-living conditions, applied recurrent neural net-
works (RNNs), including BiLSTM (Bidirectional Long 
Short-Term Memory) networks to classify PAI. Unlike 
traditional one-dimensional raw accelerometer data 
processing, this framework uses two-dimensional (2D) 
images to handle the data. This approach can provide 
the model with richer information. Moreover, BiLSTM 
networks excel at processing time-series data by cap-
turing dynamic patterns and temporal dependencies in 
both forward and backward directions. This bidirectional 
architecture allows the network to utilize information 
from both past and future states at each time step, which 
is particularly valuable for time-series data where the 
context of both preceding and succeeding data points can 
influence the interpretation of a given point [23]. This 
is particularly useful when processing continuous activ-
ity data or transitions between different activities. Nev-
ertheless, this model is not sensitive to the global spatial 
information of the activity, meaning that intensity infor-
mation might be easily overlooked. On the other hand, 
ViT excels at extracting complex spatial features from 
images, such as changes in motion position and inten-
sity, as well as, the ViT model leverages a global attention 
mechanism to identify more meaningful global features 
within the images, further enhancing classification per-
formance [24]. Consequently, this study combines the 
strengths of ViT and BiLSTM, fully leveraging the spa-
tial features of images and the temporal features of time 
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series to improve the accuracy of activity intensity clas-
sification. Furthermore, temporal stability is a crucial fac-
tor affecting model performance, especially for images 
generated from time-series data [25]. Farrahi, Muham-
mad [15] study just a 30-s TW to generate images; it 
may overlook that TW is a crucial factor influencing PA 
features in adults, consequently affecting the model’s 
accuracy. Meanwhile, the variance in intensity might 
also influence model’s accuracy as SD typically involves 
longer, stable periods, whereas MVPA requires higher 
gravity acceleration and is more distinct. But, predicting 
LPA is more challenging due to its complexity, such as 
slow walking, fast walking, or occasional movement [26]. 
Additionally, Farrahi, Muhammad [15] used METs-based 
classification from video-labelled datasets, which may 
limit the model’s practical utility. As METs-based activity 
intensity has been shown to confuse intensity types [14], 
further affecting the connection between intensity and 
health outcomes [6, 7]. Recent studies advocate the use 
of gravity-based acceleration to cumulate PA, as it can 
reduce errors associated with traditional methods such 
as cut points and METs in calculating accumulated activ-
ity [5, 27].

Therefore, this study used the ViT-BiLSTM model to 
classify images encoded from gravity-based acceleration 
data to determine PAI, Further, it considers how tempo-
ral stability (different TWs for images), and PAI, affect 
the model’s accuracy. The objectives of this study are: (1) 
to use the ViT-BiLSTM model to predict PA intensities 
calculated from gravity-based acceleration data in adults; 
(2) to examine the model’s robustness across different 
TWs and PAIs; and (3) to observation how different PAIs 
and TWs impact the accuracy of model.

Methodology
In this study, we developed a novel framework to clas-
sify PAI employing a hybrid Vision Transformer (ViT) 
and bidirectional long short-term memory (Bi-LSTM) 
network. We used raw accelerometer data from 151 
participants, which were pre-processed into gravita-
tional acceleration using the Euclidean Norm Minus 
One (ENMO) algorithm and subsequently converted 
into GAF images. The overall workflow is illustrated in 
Fig.  1. Initially, GAF images were generated from the 
pre-processed data. These images were processed by the 
ViT component to extract spatial features. These features 
were subseqently fed into a BiLSTM network to capture 
temporal dependencies. Finally, a fully connected layer 
that classified the PAIs into SD, LPA, and MVPA is added 
on the top of the network.

Dataset
The present study employed the Capture-24 data-
set, which comprises data from Axivity AX3 

wrist-worn activity trackers collected from 151 adults 
aged 18–91  years in Oxfordshire between 2014 and 
2016. Participants wore these devices continuously over 
approximately 24  h at a sampling frequency of 100  Hz, 
resulting in nearly 4000 h of data, with over 2500 h anno-
tated based on validated ground truth activities [28].

Participants
The Capture-24 dataset includes 131 participants (78 
women): 74 young adults (18–39  years; 32 men, 42 
women), 42 middle-aged adults (40–59  years; 7 men, 
27 women), and 15 older adults (60+ years; 14 men, 9 
women) [29].

Acceleration signal-to-image
Data pre-processing (physical activity intensity labelling)
The Euclidean Norm Minus One (ENMO) algorithm cal-
culates raw gravitational acceleration (g) by subtracting 
1 g (1 g = 9.81 m/s2) from the Euclidean norm of the three-
axis acceleration signals. Its simplicity and effectiveness 
lie in its ability to separate gravitational and movement 
components without requiring complex frequency filter-
ing, thereby demonstrating robust performance, particu-
larly in free-living conditions [30]. Subsequently, images 
are labelled based on the Hildebrand et al. [31] thresholds 
derived from the raw gravitational acceleration (g).

Equation (1) defines the ENMO, which is used to com-
pute the magnitude of acceleration in second-by-second 
time series and classify the PAI:

 ENMO =
√

x2 + y2 + z2 − 1g (1)

where x, y, and z represent the components of accelera-
tion in three dimensions. ENMO is calculated by taking 
the Euclidean norm (i.e., the length of the acceleration 
vector) in three-dimensional space and then subtract-
ing 1 g (1 g = 9.81 m/s2) (the acceleration due to gravity), 
yielding a corrected value for activity intensity [30]. The 
x, y, and z orientations of the Axivity AX3 are explained 
in Supplemental Material 1.

The PAI threshold defined by Hildebrand et al. [31] for 
adults (18–65 years) uses raw gravity acceleration (g) as 
follow:

  • Sedentary: 0–10 g/s
  • LPA: 10–42 g/s PAI threshold of Hildebrand et al. 

[31]
  • MVPA: >42 g/s

for sedentary behaviour, the acceleration is less than 
10 g/s; LPA is between 10 and 42 g/s; for MVPA is above 
42 g/s.

Additionally, the collection data are based on an accel-
eration sampling frequency of 100 Hz, meaning that the 
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defined activity intensities correspond to the cumulative 
acceleration over specific data points within a given time 
window. For instance, a 1-s window would include 100 
data points, while 5-s, 10-s, and 15-s windows would rep-
resent 500, 1000, and 1500 data points, respectively.

Gramian angular field
To transform raw acceleration signals into GAF images, 
we followed a comprehensive process involving several 
steps, as detailed below:

We computed the magnitude of the raw acceleration 
signal (x,y,z) using the ENMO method to remove the 
effect of gravity and filter out negative values. The result 
is a signal sequence vt at each time point t, where: vt rep-
resents the magnitude of acceleration at time t.

To ensure consistency across all samples, the signal 
sequence (vt) was normalized to the range [−1, 1]. The 
normalization formula is as follows:

 
ṽt = vt − min (v)

max (v) − min (v)
· 2 − 1, ∀t

Where: vt is the original signal value at time t; min (v) 
and max (v) represent the minimum and maximum val-
ues of the signal, respectively; ṽt is the normalized signal 
value.

The normalized signal ṽt is mapped into a polar coor-
dinate system, representing the signal in terms of angles 
and radii.

 
Angle (θt)

 
Each normalized signal value is converted into an angular 
value using the inverse cosine function:

 θt = arccos (ṽt) , −1 ⩽ ṽt ⩽ 1

Fig. 1 Overall flowchart of ViT-BiLSTM model for physical activity intensity in adults using gravity-based acceleration
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The angle encodes the relative amplitude of the signal.
 

Radius (rt)

 

 
rt = t

T
, t = 1, 2, . . . , T

The radius represents the normalized time index, pre-
serving the sequential nature of the time series, where T 
is the total length of the signal sequence.

Using the angular values θt from the polar represen-
tation, the GAF matrix is constructed to capture the 
temporal dependencies of the time series. The matrix ele-
ments are defined as:

 G [i, j] = cos (θi + θj) , i, j = 1, 2, . . . , T

where:
G[i,j] represents the cosine of the sum of the angles at 

time points i and j; This formula encodes both global and 
local temporal features of the signal. To facilitate visual-
ization, the GAF matrix values were normalized to the 
range [0, 1]. And then, the GAF images were generated 
with a resolution of 224 × 224 pixels, which is a widely 
adopted standard resolution in computer vision tasks, 
particularly for models using ViT architecture.

ViT-BiLSTM model
The ViT-BiLSTM model combines the ViT for spa-
tial feature extraction and BiLSTM for capturing tem-
poral dependencies. Below is the detailed algorithmic 
description:

ViT component
Patch embedding The GAF images derived from accel-
erometer data are divided into fixed-size patches. Each 
patch is then flattened and mapped to a lower-dimen-
sional space through a linear projection. Given an input 
image X∈RH×W×C of height H, width W, and C channels, 
the image is divided into N patches, each of size P × P. The 
resulting patches xp are linearly transformed into embed-
dings zp:

 zp = Exp + ep

where E is a learnable embedding matrix and ep is the 
positional embedding.

Positional encoding Positional encodings ep are added 
to the patch embeddings to retain spatial information. 
These encodings help the model understand the order and 
position of patches.

Transformer encoder The transformer encoder con-
sists of multiple layers, each containing a multi-head self-
attention mechanism and a position-wise feed-forward 
network. Each encoder layer updates the patch embed-
dings as follows:

 z′p = LayerNorm (zp + MultiHeadSelfAttention (zp))

 zp
(i+1) = LayerNorm (z′p + FeedForward (z′p))

where z(i)
p denotes the patch embeddings after the i–th 

encoder layer.
The features extracted by the ViT component are then 

fed into a BiLSTM model, which captures temporal 
dependencies through forward and reverse LSTM layers. 
This bidirectional processing enhances the model’s ability 
to learn temporal patterns in both directions, contribut-
ing to improved classification accuracy.

BiLSTM component
Sequence processing
The feature vectors from the ViT component, represent-
ing spatial features of the input image patches, are fed 
into a BiLSTM network to capture temporal dependen-
cies. The BiLSTM processes the sequence of feature vec-
tors in both forward and backward directions.

Let htforward and htbackword be the hidden states 
of the forward and backward LSTM cells at time step t, 
respectively. The BiLSTM outputs are concatenated:

htforward = LSTM (ht−1forward, xt, ct−1forward), t ∈ [0, T]

htbackward = LSTM (ht−1backward, xt, ct−1backward), t ∈ [0, T]

 Ht = [htforward; htbackward]

Concatenation and Classification:

 hfinal = [ht forward; ht backward]

The final output is computed using a softmax layer:

 Output = Softmax (Wohfinal + bo)

Experimental setup
This study encoding images into three different PAI: 
SD, LPA, and MVPA, using gravity acceleration. For the 
GAF image generation, data was collected daily from 
8 AM to 10 PM, focusing on the time period when SD, 
LPA, and MVPA activities predominantly occur during 
typical waking hours. The ViT-BiLSTM model then pre-
dicted the PAI. To enhance the credibility of the model, 
this study compares several models: CNN, ViT, BiLSTM, 
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ViT-BiLSTM, and CNN-BiLSTM. Consequently, the 
temporal stability testing, boundary value analysis, and 
accuracy and loss curves assessed robustness of model. 
ANOVA tests are used to examine the robustness and 
reliability of the model’s accuracy across various TWs 
(e.g., 1s, 5s, 30s), ensuring consistent performance 
regardless of these variations. Additionally, accuracy 
and loss values in the training-validation process were 
utilised to observe changes in accuracy and loss values, 
based on the TW yielding the highest accuracy results. 
This approach aids in understanding the model’s learning 
dynamics and stability over time. Finally, we examined 
the mean and standard deviation values to understand 
how PAI and TW affect the model’s accuracy.

Training details
All experiments are carried out on a workstation with 
NVIDIA 2080ti GPUs, and the dataset is divided into 
training (60%), validation (20%) and testing (20%) sets. 
During the training process, model performance was 
evaluated on both training and validation sets after each 
epoch. This allowed us to monitor the model’s learning 
progress and ensure it generalized well to unseen data. 
The validation performance served as an important 
indicator for potential overfitting, helping to optimize 
the model’s hyperparameters and determine when to 
stop training. During the training process, model per-
formance was evaluated on both training and validation 
sets after each epoch. This allowed us to monitor the 
model’s learning progress and ensure it generalized well 
to unseen data. The validation performance served as 
an important indicator for potential overfitting, helping 
to optimize the model’s hyperparameters and determine 
when to stop training.

As Table 1 shows, the training process utilised a batch 
size of 16, with a sequence length of 4, resizing each 
image resized to 224 × 224 pixels. The model was trained 
over 10 epochs with a learning rate of 1e-5, and weight 
decay set to 0.001 to prevent overfitting. The selection 
of 10 training epochs was determined through exten-
sive preliminary experiments that evaluated the trade-off 
between model performance and computational effi-
ciency. While the loss curves showed continuing minor 
decrements beyond 10 epochs, we observed that: 1. The 
rate of improvement in both training and validation 
loss decreased substantially after epoch 8, with changes 
in validation accuracy of less than 0.1% per subsequent 
epoch; 2. The model achieved 98.5% ± 1.48% accuracy 
across all temporal windows by epoch 10; 3. Extended 
training beyond 10 epochs (tested up to 20 epochs) pro-
duced only marginal improvements (<0.2% increase in 
accuracy) while significantly increasing computational 
costs; 4. Early stopping criteria monitoring validation loss 

showed that the risk of overfitting increased after epoch 
10, even though training loss continued to decrease.

During training, we employed Adaptive Moment Esti-
mation (Adam) optimizer proposed by Kingma (2015) to 
update the model parameters. Adam adapts the learn-
ing rates for each parameter using estimates of first and 
second moments of the gradients. Specifically, the learn-
ing rate was adjusted using a step learning rate scheduler 
with a gamma of 0.8 and exponential decay rates for the 
moment estimates β₁ = 0.9 and β₂ = 0.999. Mixed precision 
training was enabled through the use of a gradient scaler 
to enhance computational efficiency. The network archi-
tecture, and training parameters are detailed in Table 1.

Evaluation metrics
The model is trained using CrossEntropyLoss 
L (y, ŷ) = −

∑n
1 [yi ∗ log (ŷi)] as the loss function, where 

y is the true label and ŷ is the predicted probability distri-
bution. In order to comprehensively evaluate the model’s 
performance, we employed multiple metrics, based on 
the following basic evaluation components in classifica-
tion tasks. True Positives (TP): Cases where the model 
correctly identified the actual physical activity inten-
sity; True Negatives (TN): Cases where the model cor-
rectly identified that the activity was not of a particular 
intensity; False Positives (FP): Cases where the model 

Table 1 Model’s hyper-parameters
Stage Hyper-parameter Value
Image processing Image size 224 ´ 224

Sequence length 4
Architecture ViT

Model vit base patch16 224
Pretrained True
Input channels 3
Output features 768
BiLSTM
Hidden size 128
Number of layers 2
Bidirectional True
Output dimension 256

Training Batch size 16
Learning rate 1e-5
Weight decay 0.001
Optimizer Adam
Loss function CrossEntropyLoss
Scheduler StepLR
Scheduler step size 1
Scheduler gamma 0.8
Number of epochs 10
Dropout 0.5

Data augmentation Resize 224 ´ 224
Convert to RGB Yes
Normalize mean 0.3796, 0.3915, 0.8996
Normalize std 0.1860, 0.3054, 0.1428
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incorrectly classified an activity as a particular intensity; 
False Negatives (FN): Cases where the model failed to 
identify the actual intensity level.

Using these components, we calculate our four key per-
formance metrics, that is,

Accuracy: Measures the overall correct predictions 
across all intensity levels

 
Acc. = Num. of correct predictions

Total num. of predictions
.

Precision: Indicates the model’s ability to correctly iden-
tify positive cases for each intensity level

 
Precision = TP

TP + FP
.

Recall: Measures the model’s ability to detect all actual 
positive cases for each intensity level

 
Recall = TP

TP + FN
.

Area Under the Receiver Operating Characteristic Curve 
(AUC-ROC): Evaluates the model’s ability to distinguish 
between classes across different classification thresholds

 
AUC =

∫ 1

0
TPR

(
FPR−1 (x)

)
dx,

where TPR is the True Positive Rate and FPR is the False 
Positive Rate

F1 Score: Provides a balanced measure of precision and 
recall

 
F1Score = 2 × Precision × Recall

Precision + Recall
.

where po is the observed agreement and pe. is the 
expected agreement by chance.

To visualise the classification performance, confu-
sion matrix is generated for the different activity inten-
sity levels. In these confusion metrics, diagonal elements 
represent correct predictions where the model’s output 
matches the true activity intensity and off-diagonal ele-
ments indicate misclassifications where the model’s pre-
diction differs from the true intensity.

Additionally, we calculated per-class accuracy to pro-
vide detailed insights into the model’s performance for 
each activity category. These metrics collectively facili-
tate a comprehensive evaluation of the model’s predictive 
accuracy and reliability, ensuring robust performance 
across various levels of physical activity intensity.

Statistical testing
To assess differences in model accuracy across time win-
dows and physical activity intensities, we employed a 
two-way analysis of variance (ANOVA), which examines 
the influence of two independent factors (TW and PAI) 
and their interaction on a dependent variable (model 
accuracy). As we hypothesise that the noise levels asso-
ciated with different intensities and time windows may 
have a minimal impact on the model’s accuracy, particu-
larly if the model demonstrates high robustness.

The analysis of variance (ANOVA) was conducted 
to assess differences in model accuracy across physical 
activity intensities and temporal windows. The following 
statistical parameters were evaluated: F-value measures 
the ratio of variance between the groups to the vari-
ance within the groups, indicating whether differences 
between means are significant. Higher F-values suggest 
greater between-group differences relative to within-
group variation. p-value is that statistical significance was 
set at p < 0.05. This threshold was chosen following stan-
dard practice in machine learning and physical activity 
research.

Results
As illustrated in Fig. 1 overall flowchart shows. First, the 
process begins with data pre-processing where 3-axis 
acceleration gravity (time series) data is converted into 
GAF images using the ENMO method. which effec-
tively captures the temporal correlations of the accel-
eration data. Second, these GAF images were processed 
using a ViT to extract meaningful features, that the ViT 
model segments the GAF images into patches, applies 
position embeddings, and encodes them using multi-
head attention mechanisms to generate robust feature 
representations.

Model performance
Figure 2 compares the confusion matrices for differ-
ent models: (a) ViT-BiLSTM (Gravity-based), (b) ViT-
BiLSTM (METs-based), (c) CNN-BiLSTM, (d) ViT, (e) 
CNN, and (f ) BiLSTM. The proposed ViT-BiLSTM 
model achieved excellent performance in classifying 
physical activity intensities compared to others. Specifi-
cally, the ViT-BiLSTM model achieved an overall accu-
racy of 99.63%, with per-class accuracies of 99.5% for 
LPA, 98.9% for MVPA, and 99.5% for SD. In contrast, the 
CNN-BiLSTM model reached an accuracy of 92.01%, the 
ViT model had an accuracy of 80.36%, the CNN model 
showed an accuracy of 74.57%, and the BiLSTM model 
attained an accuracy of 80.11%. (The Confusion Matrices 
10 epochs for the comparison of different models with 30 
TWs as shows in Supplementary material 2.)

The receiver operating characteristic (ROC) curves and 
their corresponding Area Under the Curve (AUC-ROC) 
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Fig. 2 Confusion matrices for comparison of accuracy of different models
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values demonstrate the model’s strong discriminative 
ability across all activity intensities (Fig.  3). The model 
achieved excellent discrimination with AUC-ROC values 
of almost 1.0 for all physical activity intensitives. These 
high AUC-ROC values indicate the model’s robust capa-
bility to distinguish between different activity intensi-
ties while maintaining low false positive rates. The ROC 
curves show particularly strong performance in the low 
false-positive rate region, suggesting the model maintains 
high precision even at strict classification thresholds.

To evaluate the model’s robustness and reliability, we 
analysed its performance across different physical activ-
ity intensities (PAI) and temporal windows (TW) using 
both visual and statistical approaches. The distribution 
and consistency of accuracy scores are visualized through 
box plots in Figs. 4 and 5, revealing distinct classification 
patterns across different conditions.

Figure 4 demonstrates the model’s performance across 
intensity levels (SD, LPA, and MVPA), while Fig. 5 illus-
trates performance variations across different temporal 
windows (1s, 5s, 10s, 15s, and 30s). The ANOVA results, 
presented in Supplementary Material 3, indicate that the 
model maintains consistent accuracy across both differ-
ent temporal windows (F = 0.52, p = 0.72) and physical 
activity intensities (F = 2.18, p = 0.13), suggesting robust 
and stable performance regardless of these variations.

Figure 4 shows that the model achieves the highest and 
most consistent accuracy for SD, with minimal variance 
and no significant outliers. In contrast, the accuracy for 
MVPA exhibits a higher variance with notable outliers, 
indicating less consistency in predictions. LPA demon-
strates intermediate performance, with lower variance 
compared to MVPA but slightly higher than SD.

Figure 5 illustrates the accuracy of the model across dif-
ferent epoch sizes: 1s, 5s, 10s, 15s, and 30s. The whiskers 
for 5s and 30s are relatively long, indicating greater vari-
ability in model predictions for these epoch sizes com-
pared to others. Meanwhile, the average accuracy levels 
for 15s and 10s are higher, suggesting that the model is 
most stable when predicting at these epoch sizes. Addi-
tionally, the presence of outliers in 1s, 5s, 10s, and 15s 
may indicate slight inconsistencies in predictions.

Furthermore, the loss curves were conducted to 
observe the model’s performance based on the most 
optimal 15s TW for model predictions. Figure  6 show 
the results for accuracy and loss curves analysis. The 
training accuracy (depicted by the orange line) shows a 
consistent increase from approximately 95% to approxi-
mately 100% as the epochs progress from 1 to 10. This 
indicates that the model is learning well and improv-
ing its performance on the training data. The validation 
accuracy (depicted by the blue line) also shows a steady 
increase from approximately 96 to 100%, indicating 

Fig. 3 Receiver Operating Characteristic (ROC) curves for different physical activity intensities with TW 15s
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Fig. 6 Accuracy and loss curves in the training-validation process

 

Fig. 5 Box plot of model’s accuracy across different temporal window

 

Fig. 4 Box plot of model’s accuracy across different pais
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strong generalisation to unseen data. The training loss 
(depicted by the blue line) decreases sharply from about 
9 to nearly 0 as the epochs progress. This rapid decline 
suggests that the model is quickly learning and mini-
mizing errors on the training data. The validation loss 
(depicted by the orange line) shows a gradual decrease 
from around 1 to near 0, indicating a steady improve-
ment in model performance on the validation data. The 
relatively small and stable loss values demonstrate that 
the model is not overfitting. These curves show that 
the model performs well during training and maintains 
good generalisation on validation data, as indicated by 
the close alignment between training and validation 
accuracy and the decreasing loss values. The model’s 
consistent performance across epochs highlights its 
robustness and effectiveness in learning the underlying 
patterns in the data. Supplementary materials 4 shows 
accuracy and loss Curves for different TWs, which are 
also stability across epochs.

Finally, from the results in Table 2, it can be observed 
how different intensities and TWs affect the model’s 
accuracy. The model’s performance varies with different 
TWs used for generating images. Specifically, the 15s TW 
shows the best performance, achieving the highest train 
(0.99 ± 0.01) and test (0.99 ± 0.01) accuracies. In contrast, 
the 5s TW exhibits the lowest train (0.981 ± 0.01) and 
test (0.981 ± 0.01) accuracies. When considering different 
PAIs across various TWs, the model consistently achieves 
higher accuracy in predicting SD (0.989 ± 0.01) compared 
to LPA (0.982 ± 0.02) and MVPA (0.982 ± 0.03). This trend 
is apparent across all TWs, indicating that SD is easier 
for the model to predict accurately. In shorter epochs like 
1s or 5s, the model shows better prediction accuracy for 
MVPA (0.992 ± 0.007; 0.985 ± 0.01) compared to other 
intensities. However, in longer epochs such as 30s, the 
model achieves the lowest prediction accuracy for MVPA 
(0.965 ± 0.05), but higher for LPA (0.984 ± 0.01), and high-
est for SD (0.995 ± 0.007). The 1s and 15s epochs demon-
strated markedly higher standard deviations in test loss 
(SD = 0.20 and SD = 0.21, respectively) compared to other 
temporal windows (5s: SD = 0.007; 10s: SD = 0.006; 30s: 
SD = 0.006). Similarly, training loss values showed sub-
stantial variation, with the 1s and 15s epochs exhibiting 
higher standard deviations (SD = 2.8 and SD = 2.91) com-
pared to other epochs (5s: SD = 0.19; 10s: SD = 0.18; 30s: 
SD = 0.17). This pattern suggests that while these tempo-
ral windows achieved high accuracy (1s: 0.987 ± 1.5; 15s: 
0.99 ± 0.01), they also experienced greater fluctuations in 
model performance during training. The increased vari-
ability might be attributed to two-folds: (1) the challenge 
of capturing complete activity patterns in very short time 
segments (1s), leading to more unstable predictions; (2) 
add the explanation for 15s time window. These find-
ings highlight an important trade-off between prediction 
accuracy and stability across different temporal windows, 
suggesting that window selection should consider both 
performance metrics and consistency requirements for 
specific applications.

Discussion
This study innovatively combines ViT and BiLSTM to 
predict PAI using gravity-based acceleration to generate 
images. It is also the first to consider the impact of differ-
ent intensities and TWs on model robustness. Addition-
ally, this study investigates how PAI and TW impact the 
accuracy of the ViT-BiLSTM model. The present study 
demonstrates that: (1) the ViT-BiLSTM model exhibits 
high performance in predicting PAI; (2) the study con-
firms the feasibility of using gravity-based acceleration 
for intensity classification tasks. The gravity-based cal-
culation of PAI significantly enhances model accuracy 
compared to traditional MET-based methods; (3) the 
model’s high performance reveals good robustness and 

Table 2 Summary of model performance across different TWs 
and physical activity intensities
Epoch 
(training 
times)

Train 
accuracy

Test 
accuracy

Train loss Test loss

Mean (SD) Mean (SD) Mean (SD) Mean (SD)
Total (n = 50) 0.984 (0.17) 0.985 (1.48) 0.096 (0.2) 0.088 (0.16)
LPA 0.982 (0.02)
MVPA 0.982 (0.02)
SD 0.989 (0.01)
1s epoch 
(n = 10)

0.987 (0.01) 0.987 (1.5) 0.2 (0.28) 0.194 (0.20)

LPA 0.981 (0.03)
MVPA 0.992 (0.007)
SD 0.990 (0.11)
5s epoch 
(n = 10)

0.981 (0.01) 0.981 (0.01) 0.014 (0.019) 0.007 (0.007)

LPA 0.977 (0.02)
MVPA 0.985 (0.01)
SD 0.982 (0.01)
10s epoch 
(n = 10)

0.982 (0.02) 0.982 (0.02) 0.0131 (0.018) 0.006 (0.006)

LPA 0.978 (0.03)
MVPA 0.981 (0.03)
SD 0.988 (0.01)
15s epoch 
(n = 10)

0.99 (0.01) 0.99 (0.01) 0.23 (0.29) 0.228 (0.21)

LPA 0.99 (0.006)
MVPA 0.987 (0.02)
SD 0.992 (0.009)
30s epoch 
(n = 10)

0.981 (0.02) 0.986 (1.39) 0.014 (0.017) 0.007 (0.006)

LPA 0.984 (0.01)
MVPA 0.965 (0.05)
SD 0.995 (0.007)
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reliability, unaffected by variations in intensity and TWs; 
and the model consistently improves its performance 
across epochs, with both training and validation accuracy 
increasing to near 100%, and training and validation loss 
decreasing to nearly zero in accuracy and loss curve anal-
yses. (4) the TW and PAI are the potential factors that 
contribute to the model’s accuracy.

The present study applied the hybrid model of ViT-
BiLSTM in classifying LPA, MVPA, SD achieving an 
overall accuracy exceeding 99.6% (gravity-based) and 
96.9% (METs-based) using a 30-s TW, which is higher 
than other previous models [9, 15–17, 19, 21, 32, 33]. 
The present results are directly comparable with those 
reported in 8 published studies. Three of these studies 
used traditional machine learning methods on the same 
dataset (Capture-24) we used, obtaining overall accura-
cies of 80% [20], 88% [33] and 87% [32]. This may be due 
to traditional machine learning models relying on lin-
ear regression, which have limitations in predicting the 
complex variations in intensity during PA. The other five 
studies were based on deep learning methods, with four 
of them using laboratory-collected accelerometer data. 
In these five studies, one study applied ANN and k–NN 
models, resulting in 92% and 80% accuracy, respectively 
[19]. Two studies used CNN models: one study with data 
from five accelerometers showed a range of 92%–98% 
accuracy [21]; while another study achieved accuracies of 
63%, 84.2%, and 85.4% for MVPA, LPA, and SD, respec-
tively [16], Additionally, a study implementing a BiLSTM 
model with data from three accelerometers achieved 90% 
accuracy [9]. Considering only a single model framework 
and a single data dimension may limit the model’s abil-
ity to accurately assess PAI, as ANN, k–NN, and CNNs 
alone may not handle time series data effectively, More-
over, BiLSTM models without a preceding convolutional 
layer cannot extract spatial features.

Furthermore, compared to a recent study by Farrahi, 
Muhammad [15], which used the AccNet24 model and 
achieved accuracies of 98.6% for SD, 95.6% for LPA, 
and 94.7% for MVPA using METs-based PAI on the 
Capture-24 dataset with a 30-s TW window, our ViT-
BiLSTM model, also based on METs for intensity clas-
sification and using the same dataset and TW, achieved 
higher accuracies of 98.2% for SD, 96% for LPA, and 
96.3% for MVPA. This may because the ViT-BiLSTM 
model may provide the global information and utilises 
attention mechanisms, excelling at capturing the magni-
tude of intensity under variable visual conditions with the 
ViT model, while the integration with the BiLSTM model 
enhances its ability to accurately capture dynamic physi-
cal activities. Additionally, when our ViT-BiLSTM model, 
based on gravity-based acceleration for intensity clas-
sification and using the same dataset and TW, achieved 
higher accuracies of 99.9% for SD, 99.5% for LPA, and 

99.6% for MVPA, this may confirm the feasibility of 
using gravity-based acceleration for intensity classifica-
tion tasks. The gravity-based calculation of PAI enhances 
model accuracy compared to traditional MET-based 
methods. This may be because the present study used the 
gravity-based acceleration to classify images for model 
training. Gravity-based acceleration, to some extent, sur-
passes the METs-based method, reducing the likelihood 
of misclassification for PAI during image generation.

Meanwhile, the ViT-BiLSTM model demonstrated 
excellent robustness and generalisation. ANOVA showed 
no accuracy variation across PAIs (F = 2.18, p = 0.13) 
and TWs (F = 0.52, p = 0.72). The ViT-BiLSTM model 
consistently improved its performance across epochs, 
with both training and validation accuracy increasing to 
nearly 100%, and training and validation loss decreas-
ing to nearly zero in accuracy and loss curves analysis. 
Again, the present study observed that different models 
exhibited similar trends when predicting PAI, SD is rela-
tively easier to predict, likely due to the stable nature of 
sedentary behaviour. In contrast, the prediction accu-
racy for LPA and MVPA is more likely lower than for SD, 
confirming the complexity of LPA and MVPA behaviours 
[15, 21], However, the ViT-BiLSTM model can almost 
overcome the variations between behaviours, achieving 
nearly perfect accuracy in predicting different PAIs. The 
present study tested the variation in the model’s accuracy 
across different PAIs, The ViT-BiLSTM model results for 
predicting SD, LPA, and MVPA were 99.9%, 99.5%, and 
99.6%, respectively.

PA characteristics may be a potential factor affecting 
the performance of the model and should be taken into 
consideration. Previous studies have also reported simi-
lar findings. Nawaratne, Alahakoon [16] found that SB 
achieved correct predictions of 85.4%, LPA achieved cor-
rect predictions of 84.2%, and MVPA achieved correct 
predictions of 63.1% based on a 60-s TW. In contrast, 
Widianto, Sugiarto [21] showed accuracies of 98%, 95%, 
and 97% for SD, LPA, and MVPA, respectively, based 
on a 1-s TW. Also, Recent studies have reported simi-
lar findings, showing that a 1-s window performs best 
in predicting any intensity level. This is mainly because 
a 1-s window calculates acceleration more accurately, 
reducing the likelihood of values being averaged out in 
images. Additionally, for predicting LPA and SD, longer 
windows may provide higher accuracy, while shorter 
windows are more effective in predicting MVPA com-
pared to LPA, as MVPA usually involves a amount of 
activity expenditure over a short period [34], Conse-
quently, MVPA often lasts only a few seconds in adults, 
especially middle-aged or older individuals than LPA and 
SD [35]. However, using longer windows may introduce 
noise to the model due to greater variations in MVPA 
magnitude, which can affect the model’s accuracy during 
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data preprocessing. Although the impact of this factor on 
the model in this study was very slight, considering the 
characteristics of adult PA behaviour may help overcome 
some noise effects in future model development in this 
area. Additionally, Outliers mainly refer to the lowest val-
ues observed during the first epoch of the model, with 
a small difference of approximately 2–5% compared to 
the average accuracy, which indirectly demonstrates the 
good convergence performance of the model.

Strength of the present study demonstrates sev-
eral notable strengths in its approach to PAI classi-
fication. It innovatively combines ViT and BiLSTM 
models, fully leveraging the advantages of both archi-
tectures to enhance classification accuracy. The use 
of gravity-based acceleration methods for classifying 
PAI marks a significant improvement over traditional 
METs-based approaches, potentially reducing classifi-
cation errors. This study considers different TWs and 
PAIs, providing a nuanced understanding of how these 
factors impact model performance. By utilising the 
real-world Capture-24 dataset, the study enhances the 
practical applicability of its findings. Furthermore, the 
rigorous evaluation of model performance and stability 
through multiple methods, including ANOVA, confu-
sion matrices, and accuracy and loss curves, underscores 
the study’s methodological robustness. These strengths 
collectively contribute to the study’s advancement in 
the field of PA monitoring and classification using deep 
learning techniques. In this study, the ViT-BiLSTM 
model demonstrated high accuracy in classifying physi-
cal activity intensities, Future efforts could focus on opti-
mizing the model for such environments by leveraging 
techniques like model pruning, which reduces unneces-
sary parameters, and quantization, which decreases the 
precision of weights to lower memory usage and compu-
tational demands. Additionally, lightweight architectures 
could be explored as alternatives to the current design. 
These strategies would maintain model performance 
while enabling its application in real-world scenarios. A 
limitation of the present study is that it focused solely on 
adult populations and used a single intensity threshold to 
calculate activity intensity. Future work should include 
multiple threshold comparisons to evaluate the model’s 
robustness under diverse conditions.

Conclusion
The ViT-BiLSTM model proposed in this study dem-
onstrated exceptional performance in classifying PAI 
using gravity-based acceleration data, achieving an over-
all accuracy of 99.63%. The model exhibited excellent 
robustness and reliability across different TWs and activ-
ity intensities. The research found that a 15-s TW yielded 
the best performance in most cases, and the model’s 
accuracy in predicting sedentary behaviour was slightly 

higher than for light and moderate-to-vigorous activi-
ties. These findings provide important methodological 
references for future PA monitoring and classification 
research. Future study should focus on validating these 
findings across additional datasets using different PA 
thresholds and exploring the model’s performance with a 
broader range of physical activities to further enhance its 
practical applications.
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