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Abstract 

This article aims to provide and implement a patient-specific seizure (for Intervention Time (IT) detection) prediction 
algorithm using non-invasive data to develop warning devices to prevent further patient injury and reduce stress. 
Employing algorithms with high initial data volume and computations time to increase the accuracy is an important 
problem in prediction issues. Consequently, reduction of calculations is met by applying only two effective EEG signal 
channels without manual removal of artifacts by visual inspection as the algorithm’s input. Autoregression (AR) mod-
eling and Cepstrum detect changes due to IT period. We carry out the goal of higher accuracy by increasing sensitiv-
ity to interictal epileptiform discharges or artifacts and reduce errors caused by them, taking advantage of the discrete 
wavelet transform and the comparison of two channels epochs by applying the median filter. Averaging and positive 
envelope methods are introduced to patient-specific thresholds become more differentiated as soon as possible 
and can be lead to sooner prediction. We examined this method on a mathematical model of adult epilepsy as well 
as on 10 patients with EEG data. The results of our experiments confirm that performance of the proposed approach 
in accuracy and average false prediction rate is superior to other algorithms. Simulation results have been shown 
the robustness of our proposed method to artifacts and errors, which is a step towards the development of real-time 
alarm devices by non-invasive techniques.
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Introduction
EPILEPSY is a chronic disorder and outburst of the brain 
function that is caused by abnormal electrical discharge. 
Its symptoms are sudden seizures, temporary anesthe-
sia, and intermittent seizures [1, 2]. More than 50 million 
people worldwide have epilepsy [2] that suffer from inju-
ries due to the loss of consciousness or delayed response 
to the onset of seizures.

Therefore, due to the importance of reducing injuries 
many studies have addressed the prediction of epilep-
tic seizures by analysis of Electroencephalogram (EEG) 
recordings. According to the Assi study, epileptic EEG 
is divided into 5 states that Intervention Time (IT) state 
occurs a few seconds before the onset of ictal [3].

The seizures detection is also discussed in addition to 
predicting seizures in epilepsy. The purpose of detection 
is to distinguish ictal period but detection the pre-ictal 
period to create warnings for medical procedures that 
are determined hours or minutes before ictal is the aim 
of prediction and do not necessarily mean the exact time 
of ictal [4].

Prediction algorithms can be classified into two broad 
categories: short-term and long-term [3]. Therapeutic 
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operations include reducing the frequency of seizures 
or preventing the occurrence of seizures with drugs or 
nerve stimulation, or preventing traumatic events to 
the patient [4]. For this reason, short-term prediction 
can also help us in this direction. The IT period must 
also be identified from interictal as there is no specific 
time for IT.

Numerous studies have been performed to detect and 
predict seizures. Luders considers the detection algo-
rithms in three categories of 1) Pre-classification, 2) State 
and 3) Trending [4]. Pre-classification algorithms employ 
EEG data in training phase. This scheme classified into 
two categories: seizure and non-seizure [4].

State algorithms measure the absolute state of the cur-
rent epoch and compare it with the non-seizure state 
previously defined or obtained from previous data [4].

Some algorithms use modeling methods to extract fea-
tures. Toward this, AR approach [5, 6], AR Moving Aver-
age [7], dynamic model with hidden variables [8] and the 
sparse Laguerre Volterra AR [9] have investigated in lit-
erature. Other methods used in the literature include the 
Lag Synchronization Index to compare phase synchroni-
zation between chaotic oscillators [10], the largest Lyapu-
nov exponent [11], Empirical Mode Decomposition and 
wavelet transform [2], decorrelation time, power spec-
trum, Spectral Edge Frequency, criteria based on entropy 
and probability [12].

The database used in most studies has already been 
preprocessed by removing artifacts by visual inspection. 
While EEG is contaminated by natural environment arti-
facts, the prediction algorithm should be able to have 
good performance in the presence of artifacts. In [13, 14], 
the Cepstrum method is proposed to diagnose seizures, 
to be used on EEG and Intracranial EEG (IEEG) multi-
channel separately in short term, whose artifacts have 
been removed and which includes different patient states. 
According to the hypothesis [15], the nonlinear problem 
of EEG caused by signal convolution is solved by Mel-fre-
quency Cepstrum for improving the detection efficiency. 
Method of [14] was improved in 2014 by calculating the 
signals Teager energy Cepstrum and then following the 
same procedure as before[13].

Trending algorithms are to compare the current epoch 
with the background section. The background epoch 
is defined as a data window before the current epoch, 
which also changes over time. The features extracted 
from the two epochs are compared with the classification 
or threshold method. By determining the current and 
background epochs, Gotman makes a diagnosis by com-
paring the average half-wave amplitude, the coefficient 
of variation, and average half-wave duration features of 

the current and background periods, then thresholding 
between them [16, 17].

So far, we reviewed the studies which have been based 
on long-term prediction. To the best of our knowledge, 
only few studies have been performed on short-term 
prediction. Following this purpose, Osorio’s method [18] 
was presented using trending algorithms in two steps, 
Finite Impulse Response (FIR) filter and median filter 
over all IEEG data channels. Decomposition of signals 
into seizure and nonseizure and increasing the specific-
ity of seizure detection process to artifacts are performed 
by FIR filter and median filter respectively. Process-
ing all channels at steps increases computational time, 
which can be reduced by reducing the number of chan-
nels to focal channels in focal patients. According to the 
results of comparison to [18]’s method in this study, it 
can be understood that the median filter alone cannot 
adequately increase the specificity of seizure detection 
from Interictal Epileptiform Discharges (IEDs) and arti-
facts, so there is a need to add other steps. Also, artifacts 
and noise have a greater effect on EEG than IEEG [12, 
19]. However, seizure warning methods that have clinical 
application are generally based on the use of non-invasive 
EEG [10], and it is also easier to access EEG. In 2019, a 
patient-specific study was conducted based on finding 
synchronization patterns. In the threshold-based classi-
fication approach used in this study, a single feature and 
a single threshold must first be obtained, which requires 
setting the unknown parameters of the algorithm. In each 
run, which is applied to two sets of features computed 
over the two synchronization measures Phase Lag Index 
(PLI) and Weighted PLI (WPLI), and considered in three 
different lengths of time, parameters must be set for each 
patient. Cases that have better performance are consid-
ered. This algorithm evaluates all data channels as in the 
previous study. Also, the main challenge of this method is 
to tune a large number of its parameters [20].

We study the short-term seizure prediction algo-
rithm motivated by the acceptable accuracy and speci-
ficity of forecast and considering that to the best of our 
knowledge, there is no high accuracy algorithm with 
low computational cost; we aim to accept this challenge 
and progress an effective method. Moreover, we take 
advantage of methods that are sensitive to regular and 
slow periodic changes, which can detect the IT period 
of the interictal. Also, an efficient prediction algorithm 
to increase accuracy must attenuate artifact and IEDs. 
This issue is discussed thoroughly in this article. It can be 
seen that with more data processing steps, the prediction 
performance improves. Let us now summarize our main 
contributions based on three aims as follows.
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1)	 The IT period detection problem has been satisfied 
using AR modeling and Cepstrum Analysis.

2)	 The challenges of enhancing the accuracy and reduc-
ing the False-Positive Rate (FPR) are solved by the 
Discrete Wavelet Transform (DWT) and comparing 
the current epoch and background section by exerted 
median-filter.

3)	 Finally, to prepare the processed EEG for threshold-
ing, averaging and positive envelope approaches are 
utilized. The performance of the proposed algorithm 
is inspected with two other approaches, EEG data 
from hospitalized patients and the proposed syn-
thetic EEG.

The rest of this article is organized as follows. Section II 
introduces the proposed algorithm for IT detection giv-
ing a full discussion of the motivation for utilizing dispa-
rate steps. How to generate the synthetic EEG of the EEG 
Adult model is described in Section III. Section IV is 
allocated to the presentation and assessment of our simu-
lation results. Finally, Section V concludes this article.

Notations: We use capital, bold small, and small let-
ters to represent a matrix, a vector, and a scalar variable, 
respectively. The symbols e, T, and log are the exponen-
tial, transpose, and logarithm functions, respectively and 
the k variable represents the sample number of signal.

Methodology
We formulated the seizure prediction issue as a thresh-
olding task between interictal and IT periods, so the main 
problem is determining the optimum threshold value that 
is able to recognize IT faster with less error. Based on the 
quasi-periodicity of IT, we came up with the idea to relax 
the recognition problem by employing approaches that 
are periodicity sensitive and applicable to biological sig-
nals. Certainly, the recognition of quasi-periodic periods 
alone may not be accurate enough, and if we know how 
to incorporate time frequency approaches effectively, 
the algorithm’s sensitivity can be further extended. If we 
made more profit of dissimilarity of EEG temporal lobes 
channels over time, it could be much closer to less error. 
So, to tackle the thresholding problem, the following 
three subproblems should be considered. 1) what perio-
dicity sensitive approaches can be benefited for EEG? 2) 
If periodicity recognition was acceptable, how to increase 
accuracy by embedding time–frequency approaches? In 
order to improve the prediction performance, how to 
take advantage of the different channels’ changes of EEG 
over time?

To sum up, our design of the short-term prediction 
algorithm consists of three main stages: preprocessing, 

seizure prediction, and signal preparation to determine 
thresholds. Each stage contains steps to solve the sub-
problems stated above. The procedure of our algorithm 
starts with the preprocessing stage to detrend and limit 
the frequency band by filtering on two EEG channels. 
Then the seizure prediction stage is executed. In this 
stage first, preprocessed signals are time–frequency 
decomposed by DWT method then, weak periodicities 
are detected by AR-Cepstrum approach and finally the 
current epochs are compared to background sections of 
channels by applying a median filter. The procedure ends 
by calculating an average and obtaining a positive enve-
lope of processed signal for more accurate detection of 
the IT’s onset.

Preprocessing
For this research, we used segmented recordings 
from two temporal lobe channels, without the manual 
removal of artifacts by visual inspection are normal-
ized by elimination of linear trend then bandpass filter is 
applied to more benefit their effective epileptic frequen-
cies. Beforehand, it is important to choose the proper 
window length for segmentation. Some information will 
be lost and the real-time target will not be considered 
by large window length and the small window caused an 
unnecessary increase of calculations and a loss of time. 
By trying several different lengths, as a result, we have 
chosen a length of 5 s (1375 samples) with 80% overlap. 
The FIR band-pass filter with a Hamming window is 
selected for the linearity of the filter phase. To apply a 
band-pass filter, despite the importance of how to deter-
mining the bandwidth and the order of the filter, due to 
the large volume of its description, we are satisfied with 
its final values. The bandwidth and order were selected 
[6 − 20] Hz and 220 respectively. We analyzed the orders 
of 80, 220, and 500 for the 6 to 20  Hz range to deter-
mine the appropriate filter’s order. For this purpose, part 
of the training data was considered for seizure detection 
using pre-processing, AR modeling and Cepstrum steps. 
According to the results of the detection accuracy, it can 
be concluded that the 220 order filter preserves more 
morphological information for seizure detection than 
the other two filters.

Seizure prediction
Step 1. Discrete wavelet transform: As the first step of 
this stage, the DWT is superior to the frequency trans-
form methods for seizure detection because it provides 
almost simultaneous time–frequency signal information 
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at multiple levels of resolution, which apply to the two 
preprocessed signals. The reason for the higher resolu-
tion is the use of windows with variable lengths. DWT 
(x[].) corresponds to the decomposition of x[.] into vec-
tors of different resolutions, with the scaling and wavelet 
functions being used as the corresponding basis. Thus, 
the signal in each step is decomposed into two parts: low 
frequency (approximation signal) and high frequency 
(detail signal). The DWT is defined as [21]:

where x(n, ch) is certain discrete signal channels, ψ is 
the mother wavelet function, φ is the scaling function, 
d
(
j, k , ch

)
 is the detail coefficients, and c

(
j0, k , ch

)
 is the 

approximation coefficients, and the signal is represented 
on these coefficients. Normally we let j0 = 0 and select M 
to be a power of 2 (i.e., M = 2J ) so that the summations 
in Eqs.  1 and 2 are performed over n = 0, 1, 2,M − 1 , 
ch = 1, 2 , j = 0, 1, 2, , J − 1 (scale or level parameter), 
k = 0, 1, 2, , 2j − 1 (shift parameter). The Daubechies (db) 
4 and 6-levels (J − 1 = 6) of resolution were chosen for 
use in this step. Daubechies is computationally appropri-
ate, because it’s power spectral density estimates at dif-
ferent levels of resolution can distinguish and decompose 
common interictal and seizure frequency bands, and 
its impulse response is like an epileptiform discharge. 
According to the results obtained on several patients, we 
realized that the detail coefficients were more effective 
in IT detection, therefore we utilize 12 detail coefficients 
signals obtained from two channels data and Eq. 2 as the 
[det] parameter in Algorithm1.

Step2. Autoregression model: Signal parameterization 
of partial coefficients segmented by the AR model is 
an important part of this algorithm that helps to detect 
IT period of weak periodicity. This model is a versatile 
mathematical model used to display the rather irregular 
and non-stationary EEG signal, also has been the most 
widely used method for predicting/ detecting seizures 
among other modeling methods. Therefore, if xk is con-
sidered as EEG time series, the regressors vector of the 
model is φk � [xk−1, xk−2, . . . , xk−n]

′
 , the model coeffi-

cients vector is a � [a1, a2, . . . , an]
′
 and the AR model is 

expressed as Eq. (3) [5, 22]:

(1)c
(
j0, k , ch

)
=

1
√
M

∑

n

x(n, ch)φj0,k(n)

(2)d(j, k , ch) =
1

√
M

∑

n

x(n, ch)ψj,k(n)

(3)xk = (φk)
T
ak + ek

where n is the model order, ek is white noise error sig-
nal with zero mean and aj(j = 1, 2, . . . , n) are unknown 
parameter vectors which are estimated with recursive 
online estimators. The proposed method has the poten-
tial to be implemented in real-time brain implant sys-
tems. In the Recursive Least Squares (RLS) method, the 
AR coefficients are estimated in such a way to minimize 
the cost function (J ):

where the âk estimates ak , � is the forgetting factor, and 
ǫ(i,a) is prediction error obtained from Eq. (5):

and the coefficients ak are recursively estimated as 
follows:

here, x̂k is the estimate ak , âk estimates ak , and kk is gain 
in sample k with dimensions n× 1:

and Pk is the inverse correlation matrix of the model 
coefficients with dimensions n× n obtained by Eq. (8):

The estimated xk is obtained from Eq. (9):

Usually, the initial values and the vector of coefficients 
are considered P0 = δI and a0 = [0] , where 0 < δ < 1 
and I are the identity matrix. The outputs of previous 
step are first windowed by length of 500 samples and 
75% overlap, which is introduced as the [seg] parameter 
in Algorithm1. The forgetting factor is set to 0.99, and 
the appropriate order of the AR model is found using the 
model order estimation criteria, such as Akaike Infor-
mation Criterion (AIC), Final Prediction Error (FPE), 
and cost function, mentioned in reference [23]. Accord-
ing to these criteria, the most suitable order is 8, and 
then the AR model is recursively estimated (Eq. (9)) and 
creates the [est] parameter in Algorithm1. The length 
and number of the estimated model will be equal to the 
length and number of outputs of the previous step. Step 
3. Cepstrum: The inputs are segmented with a window as 
before and Cepstrum is applied on them, represented by 
the [ceps] parameter in Algorithm1. The real Cepstrum is 

(4)J ak = arg min
ak

k

i=1

�
k−iǫ2(i,a), 0 < � < 1

(5)ǫ
(
k , â

)
= xk − (φk)

T
âk−1

(6)âk = âk−1 + kkǫk

(7)kk = Pkφk

(8)Pk =
(
Pk−1 −

Pk−1φkφ
T
k Pk−1

�+φT
k Pk−1φk

)
1
�

(9)x̂k = (φk)
T
âk−1
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defined as the inverse Fourier transform of the log mag-
nitude spectrum. First, the Discrete Fourier Transform 
(DFT) signal is obtained as follows[13].

The Cepstrum coefficients of the discrete signal is 
expressed as Eq. (11).

According to the hypothesis of [15], EEG signals can 
be regarded as the result of the convolution of two func-
tions generated by motivation signals and the common 
effect of the neuronal structures. This reference, proposes 
the deconvolution method for separating the EEG from 
different components. Therefore, the use of cepstrum 
converts the convoluted signal to a time-domain linear 
signal. Other reasons for choosing this method are men-
tioned below.

1. Cepstrum is used to detect unvoiced from voiced 
speech that has slow and periodic changes. The seizure of 
the EEG signal has a regular and periodic rhythm com-
pared to the interictal period, and the Cepstrum can be 
used to detect seizure’s onset. 2. Moreover, a limited num-
ber of Cepstrum coefficients can be considered in signals, 
such as EEG, with a long length because the final Cepstrum 
coefficients are close to zero. According to the obtained 
results, the first coefficient is sufficient and appropriate for 
prediction. Therefore, we utilize the first coefficient by Cep-
strum calculation. As a result, the number of outputs of this 
step is the same as the previous steps [15, 24].

Step 4. Median filter and comparing the background 
series with the current series: Wavelet and median filter 
steps are used to improve the seizure detection process 
of certain artifacts, interictal epileptiform discharges, 
or even normal activities such as alpha waves following 
the second aim. The median filter is able to remove ran-
dom noises and can somewhat preserve image details 
and image edge. This property makes it a good choice 
for accurate detection of the “edge” between the seizure’s 
onset and non-seizure states.

The EEG signal contains both positive and negative val-
ues, and signal magnitude was higher in the ictal period 
than in the interictal period. To increase the difference 
between the two periods, we first obtain its square and 
then pass the squared data through the median filter with 
a moving window of a certain length. The recent current 
period (FGk) is obtained from Eq. (12) [18].

(10)X(k) = 1
N

N∑
n=1

x(n)e
−j

(
2π k

N

)
n

(11)C(n) = 1
N

N∑

k=1

log(|X(k)|)ej
(
2π k

N

)
n

Here, q is window length or filter order and equal 
to one second, which is determined according to the 
sampling rate. Using this EEG feature, which has a dif-
ferent morphology at different times and channels, 
we can increase accuracy and reduce error. Therefore, 
the changes of the current period are measured com-
pared to the background period of two channels. The 
background period is obtained by passing the current 
period through the median filter and then “exponen-
tially forgetting” the output. The forgetting factor is a 
parameter used in adaptive filtering. It provides a way 
to control the influence of older observations on the 
current estimate. Adjusting the “forgetting factor” (�) 
allows to set the length of the window corresponding 
to the background to any length from seconds to days, 
without increasing the computational burden. This, 
combined with the median filter insensitivity to spu-
rious signal changes, allows accurate representation 
of the history of the signal and timely adaptation to 
state changes. The background period is obtained from 
Eq. (13).

where n = 0, 1, 2, . . . , s = 0.5sec is half the sampling rate, 
q2 is equal to the sampling rate, and � = 0.99 is the for-
getting coefficient. The dimensionless ratios for each 
channel are calculated from Eq. (14).

Here, i = 1 (main channel), j = 1, 2 and j = 2 (non-
main channel) are the channels number. The median 
filtering method and the generation of the background 
period were tested on a patient’s EEG, indicating the 
ability to identify seizure’s onset and non-seizure edges 
[18]. At the input of this step, we have 12 signals, 6 of 
which are related to the main channel, and the other 6 
are related to the non-main channel. This step has two 
parts according to Eq. (14): the first part is the ratio of 
the first channel to itself, and the second part is the 
ratio of the first channel to the second channel, so we 
will have 12 outputs which are the same as [rat] param-
eter in Algorithm 1.

(12)FGk = median
{
y2k, y

2
k−1, . . . , y

2
k−q+1

}

(13)

BGk =






(1− �)median {FGk,

FGk−s , . . . , FGk−(q2−1)s

�
+

(�)BGk−1 k = ns

BGk−1 n(s − 1) ≤ k < ns

(14)r
(j)
k = FG

(i=1)
k

BG
(j)
k
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Algorithm 1. EEG  training  prediction  algorithm

Preparation to determine the thresholds
Averaging and evelope of the curve: The third stage of the 
algorithm, which includes averaging and envelope steps, 
are suitably designed with the following three objectives: 
1. To eliminate bursts and high-frequency artifacts, 2. To 

down sample and 3. To smooth the achieved signal. Given 
that the averaging method eliminates the initial changes 
of the IT period, we consider the length of the window 
in two seconds with one second overlap ([ave] parame-
ter in Algorithm 1). In Fig. 1, curve 2 is the average and 
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the start of the IT period occurs in 360 s, which cannot 
be determined on curve 2 by the threshold method. The 
calculation of the positive envelope ([pos] parameter 
in Algorithm 1) of curve 2 will yield curve 1, which can 
facilitate the threshold determination of the start of the 
IT period. The variable that must be specified in this step 
is the number of samples between the two peaks of the 
curve, and a value of 30 was appropriate here.

Thresholding: The results obtained from the posi-
tive envelope curves indicate different thresholds for 
predicting the seizure of each patient; thus, a different 
threshold is considered for each patient. According to 
the 12 output signals, the threshold values are selected 
with the least error and the most appropriate delay 
from the start of the seizure. The proposed training and 
test algorithms are summarized in Algorithms 1 and 
2, respectively, and how to apply the thresholds to the 
new data in more detail and evaluate the performance 
of the algorithm are given in the IV-B section.

Algorithm 2.  EEG test  prediction  algorithm

Adult epileptic eeg signal model
The structure of the Celka model which was formerly 
proposed based on Non-Gaussian and non-statistic EEG 
by Roessgen and Lopesdasilva [25–27], has since been 
used by other researchers to detect seizures in infants. 
In this study, the proposed model includes ictal, inter-
ictal, and IT periods, which are derived from the Celka 
model and present adult dataset. In adults, seizures 
typically occur at a frequency between 0.5 and 10  Hz. 
However, for newborns and infants, seizures tend to 
have a lower frequency content. To date, no model of 
adult epileptic EEG has been proposed that is suitable 
for the prediction. To cover the differences between 
the neonatal and adult EEGs to some extent, we change 
the frequencies of Celka model and determine the filter 
coefficients used in this model by using the real adult 
data available.

Using the interictal period of the present adult dataset, 
H1(z) and H2(z) are estimated with order = 2 and to pro-
duce epileptic EEG, set the fm = 1.5Hz in equation S(k) . 
Examples of interictal and ictal are given in Fig.  2 and 3, 
respectively. The IT period has less amplitude and fre-
quency than ictal, so by setting the frequency fm to 1 Hz 
and lower amplitude is produced as ictal, of which Fig. 4 is 
an example.

Simulation and results
Data collection
Data were collected from EEG of patients with tem-
poral lobe epilepsy through Long-Term Monitoring 
(LTM) by the authors in Mehrgan Hospital in Kerman, 

Fig. 1  Curve 2 shows the average output of the series comparison 
stage using the leading window, and curve 1 is the envelope curve 
of curve 2
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the largest East province of Iran for diagnostic purposes 
only, which was also used in this study. In this study, 
26 electrodes with a sampling rate of 256  Hz, 11  h of 
interictal data, and 34 min of ictal data were performed 
with an international 10–20 system of EEG electrode 
positions on the EEG of 10 patients. Data were col-
lected while the hospitalized patients were awake and 
asleep. Details of the patients’ EEG of dataset and data 
employed for generating synthetic adult EEG, such 

as age, gender, type of epilepsy, localization, number 
of seizures, amount of InterIctal, and Ictal data train-
ing and testing are given in Table  1. There are several 
records for each patient, some of which are randomly 
considered as training data. According to researches, 
the accuracy of predicting multi-channel epileptic sei-
zures is better than one channel [3], according to Tem-
poral Lobe Epilepsy (TLE) patients, two channels are 
selected from the temporal lobes. The main channel 

Fig. 2  Inter-ictal period EEG obtained from the adult epileptic model

Fig. 3  Ictal period EEG obtained from the adult epileptic model

Fig. 4  IT period obtained from the adult epileptic model
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is the seizure focus (main) and the second channel is 
selected opposite the seizure focus (non-main). There 
are many artifacts on the data due to their long dura-
tion and the patient’s daily activities. In the proposed 
algorithm, the intervals with artifacts are not removed 

and the data are processed completely and continu-
ously, yielding acceptable results. Data are analyzed 
with MATLAB R2017b software. It should be noted 
that the purpose of this study is not to locate the focus 
of seizures, and the channel is selected non-automati-
cally and the selected channels are also fixed in differ-
ent records.

Thresholding and performance evaluation of the proposed 
method
In prediction, the thresholding is done according to 
12 output signals of positive envelop step. First, the 
thresholds for each signal are specified according to the 
training data. Some signals may not have a low-error 
threshold for prediction; thus, this signal is not accepted 
for training. As a sample the results of a patient’s predic-
tion are present in Fig. 5, showing an unprocessed EEG 
signal where the IT period occurs at 360 s. As mentioned 
above, we will have 12 outputs. Figure 6 shows the first 

Table 1  Information of EEG data

Pat. n patients number, #Sei.Tr #Seizure Train, Int.Tr Interictal Train, Ict.Tr Ictal Train, #Sei.Te #Seizure Test, Int.Te Interictal Test, Ict.Te Ictal Test

Pat. n Age (years) Gender Type of 
epilepsy

Localization #Sei. Tr Int.Tr
(sec)

Int. Tr
(sec)

#Sei.Te Int. Te
(sec)

Int. Te
(sec)

1 32 Female TLE 1 677 73 - 800 -

2 38 Male TLE 2 1744 91 4 3759 182

3 29 Male 3 2657 184 2 5955 192

4 18 Male TLE Left temporal 1 1500 130 1 3707 91

5 32 Female FLE Left frontal 1 1435 65 - 2195 -

6 30 Female TLE Right temporal 1 740 64 - 1200 -

7 32 Male FLE Left frontal 1 1255 72 1 3350 100

8 21 Male TLE 1 2641 108 3 3367 308

9 38 Female TLE Right temporal 1 210 90 - 350 -

10 25 Female TLE 1 1900 100 2 1620 200

- - - - 2 5780 200 3 2015 600

Fig. 5  Signal of a patient without processing at the start of IT period 
in 360 s

Fig. 6  Curve 1 is the first output, which is the result of comparing the first channel to itself resulting from the first detail coefficient in the wavelet; 
curve 1 is the envelope curve of curve 2; the threshold value is 1.22 and the prediction time is 370 s
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of 12 outputs signal, which is a comparison of the main 
channel with itself and results from the first detail coef-
ficient in the wavelet step. Curve 1 is the positive enve-
lope of curve 2, and the threshold value is determined 
based on curve 1. The threshold value is assumed to be 
1.22 to avoid error, and the prediction time is 370 s. Fig-
ure 7 illustrates the seventh output signal, resulting from 
the comparison of the main channel with the opposite 
channel due to the first detail coefficient in the wave-
let step, and curve 1 is the positive envelope of curve 2. 
According to the figure, this output does not detect the 
IT period, thus, this output is not used for the test data 
in this patient.

Other acceptable thresholds are determined in the 
same way and examined in the test data. Given that 
the average length of seizure periods is usually 100  s, 
test records can be fractioned into 100-s intervals, 
which is the Seizure Occurrence Period (SOP) inter-
val. The IT period is considered when half the outputs 
amplitudes of the intended interval of test data exceed 
their acceptable thresholds. For example, if there are 
seven out of 12 signals with an approved threshold in 
the training data, the amplitude of four signals must 
exceed the thresholds. This process is performed for 
each patient.

To evaluate the performance of the algorithm with 
other studies, we use the criteria of sensitivity, specificity, 
accuracy, and FPR, which are respectively obtained (15), 
(16), (17), and (18) [28].

(15)Accuracy =
TP + TN

TP + TN + FP + FN

(16)Sensitivity =
TP

TP + FN

where TN ,TP, FN  and FP are the true negative, true pos-
itive, false negative and false positive respectively. To TN  
and FP , it is necessary to segment the EEG signal with 
the SOP length. Table 2 presents the evaluation outcomes 
of the proposed algorithm. The prediction results were 
obtained with a sensitivity of 87.5%, specificity of 95.6%, 
an accuracy of 92.6%, and an FPR of 1.50 with an average 
prediction time of 18.5 s. The prediction time, depending 
on the duration of the patient’s response to the alert of 
at least 10  s before the onset of a seizure is also perus-
ing, which will average 31 s. Also, one of the outputs of 

(17)Specificity =
TN

TN + FP

(18)FPR =
FP

whole of Interictal hours

Fig. 7  Curve 1 is the seventh output, resulting from the comparison of the first channel with the second channel obtained from the first detail 
coefficient in the wavelet; curve 1 is the envelope curve of curve 2, which is not able to recognize the IT period and is not considered here

Table 2  Results obtained from the proposed prediction method

Sens sensitivity, Spec specitivity, Acc accuracy, Ave.Pre Time Average of prediction 
times, Ave Average

Pat. n Sens% Spec% Acc% FPR Ave.Pre 
Times
(sec)

1 - 100 - 0 -

2 75 88.3 86.9 4.19 41

3 100 98.4 98.5 0.5 5

4 100 100 100 0 20

5 - 100 - 0 -

6 - 100 - 0 -

7 100 100 100 0 27

8 50 88.4 86.3 3.9 2

9 - 100 - 0 -

10 100 81.4 84.3 6.6 10

Ave 87.5 95.6 92.6 1.50 18.5
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the proposed adult model which includes interictal and 
IT periods is shown in Fig. 8 and indicates the prediction 
ability of the proposed method by setting the appropriate 
threshold. It should be noted that in patients whose ictal 
test data are not available, the thresholds were obtained 

based on ictal and interictal training data and their speci-
ficity and FPR criterias were evaluated.

Performance comparison
A few studies have been performed to predict short-
term seizures. As a comparison between our proposed 
method and other exciting methods, we applied ref 
[18]’s and [20]’s methods on our existing EEG data, 
also the average results are given in Table 8. The results 
of [18]’s method previously described are shown in 
Table  3. We weighed up our method with the [20]’ 
threshold-based classification from among three classi-
fication algorithms presented in it. In [20], the postictal 
is presumed to be 1000 s while 150 s is set for it.

due to the length limit of the available dataset. The 
number of patients is 60% of the total number of 
patients, the training seizure instances is obtained 
by randomly selecting [0.5 total number of sei-
zure instances] for every patient, so four patients are 
removed from the dataset, the details of patients’ EEG 
are given in Table 4. All the results are average over the 
q runs which is recorded in the table. Since two sets of 
WPLI and PLI features in three different lengths T1, 
T2, and T3 are equal to 150, 200, and 300 respectively. 
Here, the average ictal period is considered to be 70  s, 
so the SOP lengths are achieved at 370, 420, and 520 
respectively (for T1: average ictal length + T1 + pos-
tictal = 370). Table  5 and Table  6 show the results of 
WPLI and PLI features for T1 and T2 respectively, in 
which WPLI outcomes indicate higher average accu-
racy and the lower average FPR than PLI. WPLI, PLI-T3 
in Table  7, the average accuracy rate of WPLI is infe-
rior than that of PLI but its FPR is better. Table  8 also 
includes the best performance of [20] on the available 
dataset. Also, according to the results, it can be under-
stood that the sensitivity, specificity, accuracy, and FPR 

Fig. 8  Output prediction with the proposed method on the adult epileptic model (start of IT and ictal periods at 1000 and1030sec, respectively)

Table 3  Results obtained from the reference method [18]

Pat. n Sens % Spec% Acc% FPR Ave.Pre 
Times
(sec)

1 40.4 - - 21.2 -

2 100 76.5 78.7 8.43 38

3 100 93.3 93.5 2.4 2

4 100 70 71 10.7 50.5

5 - 90.8 - 3.2 -

6 - 100 - 0 -

7 100 28.9 31 10.4 36.5

8 0 100 92.4 0

9 - 42.8 - 20.5 -

10 50 53.8 53.3 16.6 1.5

Ave 75 69.7 70 9.3 26.2

Table 4  Information of patients’ EEG data employed in [20]’s 
method

q = #runs, Int = Interictal, Ict = Ictal

Pat.n #Sei
Tr

#Sei.Te Int
(sec)

Ict
(sec)

q

2 3 3 5503 273 5

3 3 2 8612 376 5

4 1 1 5207 221 2

7 1 1 4605 172 2

8 2 2 6008 416 5

10 2 1 3520 300 3
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of the proposed method are superior to the criteria [18] 
and [20]. The accuracy, FPR, and prediction time of the 
proposed method are 92.6%, 1.5, and 18.5 s, respectively. 
Significant high and low values in accuracy and FPR can 
be observed in our method, respectively. Our prediction 
time is proper for alleviating life threatening events and 
initial management of epileptic seizures before clinical 
symptoms and the false alarm rate is the lowest.

Table 5  WPLI-T1 and PLI-T1 results obtained from the [20]’s method

Pat.n =Patients number, Sens=sensitivity,Spec =specitivity,Acc =accuracy, PreTime=prediction time

WPLI-T1 PLI- T1

Pat. n Sens% Spec% Acc% FPR Ave.Pre 
Times
(sec)

Sens% Spec% Acc% FPR PreTime
(sec)

2 28.6 37.6 30.9 4.28 78 20.9 19.3 19.8 5.6 27

3 0 14.39 18.88 7.11 - 14.3 17.5 27.4 6.6 99

4 50 77 77 1.75 82 50 77 77 1.75 82

7 71 41 42.8 6.4 344 71 41 42.8 6.4 344

8 2.2 12.2 4.4 3.4 101 2.2 9.6 7.6 3.7 101

10 0 100 74.5 0 - 0 26.4 62.7 1.29 -

Ave 25.3 47 41.4 3.82 120 26.4 31.8 39.55 4.22 101

Table 6  WPLI-T2 and PLI-T2 results obtained from the [20]’s method

WPLI- T2 PLI- T2

Pat.n Sens% Spec% Acc% FPR Ave.Pre 
Times
(sec)

Sens% Spec% Acc% FPR PreTime
(sec)

2 22.4 31.9 26.7 4.77 103 22.4 33.2 26.7 5.12 103

3 96.3 19.6 40.4 6.1 61 6.2 36.9 46.4 5.4 129

4 50 75 75 1.84 82 50 75 75 1.84 82

7 0 19 16 7.46 - 0 19 16 7.46 -

8 12 21.2 17.4 6.4 3 27.5 15.2 16.2 6.7 75

10 0 58.8 44.1 3 - 0 58.8 44.1 3.1 -

Ave 30 37.5 36.6 4.92 71.4 17.6 39.6 10 4.93 96

Table 7  WPLI-T3 and PLI-T3 results obtained from the [20]’s method

WPLI-T3 PLI- T3

Pat. n Sens% Spec% Acc% FPR Ave.Pre Times 
(sec)

Sens% Spec% Acc% FPR PreTime (sec)

2 61.8 44.3 51.4 2.83 204 69.6 44.3 51.41 3.72 199

3 40.1 9.7 22.9 5.6 155 42.1 23.5 36.1 5.2 132

4 0 71 66 2.14 - 0 71 66 2.14 -

7 100 64 69 2.71 264 100 64 69 2.71 264

8 31.1 26.3 23.7 4.8 202 35.3 26.3 23.7 4.9 209

10 0 29.4 19.6 3.1 - 0 29.4 19.6 3.1 -

Ave 38.8 40.7 42 3.53 199 41 43 44 3.6 193

Table 8   Comparison with other seizure prediction methods 
applied to our existed dataset

Sens% Spec% Acc% FPR PreTime
(sec)

Ave’ [18] 75 69.7 70 9.3 26.2

Best Ave’ [20] 58.5 55 56 3.19 173.8

Our Ave 87.5 95.6 92.6 1.50 18.52
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Conclusion
In this study, a short-term seizure prediction algorithm 
was presented in patients with temporal lobe epilepsy 
based on AR-Cepstrum Analysis and Signal Morphol-
ogy. To this, goal, an algorithm was proposed based 
on three aims: 1) IT detection with AR model and 
Cepstrum analysis, 2) DWT and median filter steps to 
increase accuracy and reduce artifact according to sig-
nal morphology in periods and channels, and 3) aver-
aging and positive envelope steps to determine the 
patient-specific thresholds.

In this method, we tracked the changes in the behav-
ior of the epileptic focus area in two opposite recording 
channels in the time domain. To simplify the algorithm, 
the use of two channels and the first coefficient of Cep-
strum was considered the most effective coefficient 
and the thresholding method instead of classification. 
Another advantage of the algorithm is the ability to 
reduce artifacts that are in different frequencies, which 
are separated by a wavelet transform. Because two chan-
nel artifacts are unequal at the same time and in the 
same channel at different times, artifacts are reduced by 
comparing the channels to each other and the other one. 
Our experimental results and the comparison with other 
works illustrate that the proposed method is efficient, 
reliable, and suitable for short-term seizure prediction. 
This is by reaching accuracy higher than other methods 
with proper prediction time to initial management of 
epileptic seizures before clinical symptoms and alleviate 
risks of seizure. For more reliability, the performance of 
the algorithm was evaluated on the adult epileptic EEG 
model and yielded acceptable results. This algorithm can 
be developed in portable alarm devices for real-life use 
and patient-specific non-invasive data with artifacts. It is 
recommended to test the algorithm on more patients to 
confirm its performance clinically.
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