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Abstract

Background: Automating cytology-based cervical cancer screening could alleviate the shortage of skilled
pathologists in developing countries. Up until now, computer vision experts have attempted numerous semi and
fully automated approaches to address the need. Yet, these days, leveraging the astonishing accuracy and
reproducibility of deep neural networks has become common among computer vision experts. In this regard, the
purpose of this study is to classify single-cell Pap smear (cytology) images using pre-trained deep convolutional
neural network (DCNN) image classifiers. We have fine-tuned the top ten pre-trained DCNN image classifiers and
evaluated them using five class single-cell Pap smear images from SIPaKMeD dataset. The pre-trained DCNN image
classifiers were selected from Keras Applications based on their top 1% accuracy.

Results: Our experimental result demonstrated that from the selected top-ten pre-trained DCNN image classifiers
DenseNet169 outperformed with an average accuracy, precision, recall, and F1-score of 0.990, 0.974, 0.974, and
0.974, respectively. Moreover, it dashed the benchmark accuracy proposed by the creators of the dataset with
3.70%.

Conclusions: Even though the size of DenseNet169 is small compared to the experimented pre-trained DCNN
image classifiers, yet, it is not suitable for mobile or edge devices. Further experimentation with mobile or small-size
DCNN image classifiers is required to extend the applicability of the models in real-world demands. In addition,
since all experiments used the SIPaKMeD dataset, additional experiments will be needed using new datasets to
enhance the generalizability of the models.
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Background
Cervical cancer is a women-specific sexually transmitted
infectious disease caused by, mainly, high-risk human
papillomavirus (HPV). Worldwide, an estimated 570,000
cases and 311,000 deaths were registered in 2018 only.
Among these numbers, about 85% of them are from de-
veloping countries [1].

Considering the prevalence of the disease, inter-
national organizations such as the World Health
Organization (WHO) start to set new initiatives to elim-
inate it from the public health burden. WHO’s new
strategy emphasized on the elimination of cervical can-
cer from public health problems before the year 2030,
mainly, focusing on three pillars (prevention, screening
and treatment/ management) in a comprehensive ap-
proach. In the strategy, it is clearly stated that to reach
the stage of cervical cancer elimination, every country
must give 90% coverage of HPV vaccine for girls of 15
years of age, perform 70% high-performance cervical
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cancer test (screening) for females between ages of 35
and 45, treat 90% of precancerous lesions and 90% man-
agement of invasive cancer patients [2].
In the past few decades, high-income countries have

implemented population-wide screening programs and
showed a significant reduction in mortality and morbid-
ity caused by cervical cancer [3, 4]. The experience could
be a good model to be further extended in low- and
middle-income countries. However, the lack of basic re-
sources such as skilled health personnel and screening
tools have been posing a major challenge [5, 6].
The latest WHO guideline regarding cervical cancer

screening recommends three main techniques: high-
risk HPV type testing using polymerase chain reaction
(PCR), visual inspection with acetic acid (VIA), and
cervical cytology [7]. Among the three, cervical cy-
tology is the most common and the orthodox way of
screening. It has been considered as the standard
technique valuing its contribution to the reduction of
incidence and mortality rate in many high-income
countries worldwide [5]. The popular and well-
developed techniques for cervical cytology are con-
ventional Papanicolaou smears (CPS) and liquid-based
cytology (LBC). The results of comparative studies fo-
cusing on the quality of CPS and LBC samples con-
cluded that LBC is better than CPS [8, 9]. However,
considering the economic burden, LBC is more com-
mon in high-income countries whereas CPS is more
preferable in low- and middle-income countries [8].
Even though cytology techniques are effective in the

reduction of morbidity and mortality, they suffered from
the following main drawbacks: their sensitivity is less op-
timal, the interpretation of results mainly depends on
the morphological characteristics of cytoplasm and nu-
cleus of the cell which requires a highly skilled cytotech-
nologist. Moreover, analyzing a single sample takes
considerably long time and is labor-intensive.
In order to bridge the aforementioned gaps of manual

cervical cytology screening, computer vision experts
have been developing alternative computer aided ana-
lysis tools, especially for CPS based analysis. Automated
computer aided tools should work on par with medical
experts in order to deploy them in real world environ-
ments. The recent advancement of the computer vision
field has benefited from deep learning algorithms and
has shown very promising results for medical image ana-
lysis. Researchers have developed systems that either
classify single-cell CPS images or detect abnormal cells
from full-slide CPS images. A detailed and extended re-
view is found in [10].
In literature, three single-cell CPS image analysis pipe-

lines have been proposed as illustrated in Fig. 1. The
traditional techniques follow either pipeline 1 or pipeline
2 or both combined, which are based on handcrafted

features generated from either segmented regions of the
CPS images or directly from the preprocessed CPS im-
ages. The main difference between the two pipelines is
the requirement of the segmentation stage. For instance,
if the required feature vectors are attributes of the
morphology or shape of an object such as area, perim-
eter, thinness ratio, and eccentricity, first, the cytoplasm
or the nucleus of the cells need to be segmented from
the rest of the image content. On the other hand, if the
required features do not require descriptors of seg-
mented objects such as chromatin and texture, the seg-
mentation stage will be skipped as it is depicted in the
pipeline 2. In other words, the feature vectors will be
directly calculated from the pre-processed CPS images.
Features calculated using the two pipelines commonly
known as hand-crafted features. Hand-crafted features
give a privilege to the computer vision expert to select
and supervise the extracted feature vectors. Sometimes
dimensionality reduction schemes pick the right subset
from a bucket of large feature vectors. Previous research
works had been presented using such traditional single-
cell CPS image analysis techniques [11–18]. The other
technique (pipeline 3) takes the benefit of deep convolu-
tional neural networks (DCNNs) to learn complex fea-
tures directly from the labelled raw or preprocessed CPS
images. The main advantage of these deep DCNNs is
their ability to extract feature vectors without the inter-
vention of domain experts. Previous studies that used
DCNNs for single-cell CPS analysis are presented in
[19–24]. In this study, we investigated the applicability
and performance of transfer learning for single-cell CPS
image analysis using pre-trained DCNNs.
Plissiti, M. E et al. [17] produced a new benchmark

CPS dataset in 2018 named SIPaKMeD which is used by
researchers for both traditional and deep learning based
CPS image analyses. In [17] they have used VGG-19
architecture for classification of the SIPaKMeD dataset
into 5-classes. They have also used SVM at the last con-
volution layer and fully connected layer to classify pre-
activated features extracted using the VGG-19 model.
For the deep learning based classification benchmark,
they achieved an average accuracy of 95.35, 93.35 and
94%, respectively.
To the best of the authors’ knowledge there is no re-

search that bases [17] as a benchmark and SIPaKMeD as
dataset. In this study, we contributed by exploring ten
best performing DCNN image classifiers which are se-
lected based on their top-1 accuracy on ImageNet classi-
fication challenge. We have conducted detailed transfer
learning experiments using the selected pre-trained
DCNN image classifiers and performed a comprehensive
comparative analysis with the benchmark research. In
addition, we have applied preprocessing algorithms to
boost the performances of the classification schemes. As
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a limitation, due to lack of similar cytology datasets, we
haven’t evaluated the proposed schemes on other data-
sets. This probably affect the generalization ability of the
classification models when they encounter single-cell
CPS images collected from a different setting to the
SIPaKMeD dataset.

Experiment and results
To maintain a fair comparison, all the training hyper-
parameters were kept identical in all experiments. As il-
lustrated in Figs. 2 and 3 the networks were trained for
100 epochs using a categorical cross-entropy loss, a
batch size of 32 and adagrad optimizer. We have trained
all the models with an initial learning rate of 0.001
which changes its value by a factor of 0.5 if there is no
increment in the validation accuracy over 10 consecutive
epochs until it reaches a value of 0.00001.

After training, we evaluated the classification models
using the test dataset and their evaluation results are
summarized in Table 1.

Discussion
As can be inferred from Table 1, DenseNet169 outper-
forms all the other classification models in all evaluation
metrics. Its normalized average accuracy, precision, re-
call and F1-score values are 0.990, 0.974, 0.974 and
0.974, respectively. Across all experiments, Koilocytotic
cells are more challenging to classify, i.e. their true posi-
tive value is the least compared to other classes. Similar
reporting can be found in the benchmark manuscript
[17]. The second most challenging class type is the
metaplastic cells.
When we further inspected the aforementioned cell

types, we found out that most of the false negatives of
Koilocytotic cells were incorrectly classified as

Fig. 2 Training accuracy (left) and training loss (right) of the proposed classification models

Fig. 1 Common pipelines to classify CPS images
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Fig. 3 Validation accuracy (left) and validation loss (right) of the proposed classification models

Table 1 Individual and average accuracies, precisions, recalls and F1-scores of the proposed classification models evaluated using
test dataset

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

NASNetLarge DC 0.992 0.980 0.980 0.980 InceptionResNetV2 DC 0.992 0.962 1.000 0.980

KC 0.964 0.894 0.930 0.912 KC 0.958 0.899 0.890 0.894

MC 0.970 0.913 0.940 0.926 MC 0.968 0.904 0.940 0.922

PC 0.994 0.990 0.980 0.985 PC 0.988 0.980 0.960 0.970

SIC 0.988 1.000 0.940 0.969 SIC 0.990 1.000 0.950 0.974

Average 0.982 0.955 0.954 0.954 Average 0.979 0.949 0.948 0.948

Xception DC 0.990 0.961 0.990 0.975 ResNet152V2 DC 0.986 0.952 0.980 0.966

KC 0.968 0.920 0.920 0.920 KC 0.958 0.891 0.900 0.896

MC 0.974 0.922 0.950 0.936 MC 0.968 0.904 0.940 0.922

PC 0.986 0.989 0.940 0.964 PC 0.992 0.990 0.970 0.980

SIC 0.998 1.000 0.990 0.995 SIC 0.988 1.000 0.940 0.969

Average 0.983 0.959 0.958 0.958 Average 0.978 0.947 0.946 0.946

InceptionV3 DC 0.988 0.943 1.000 0.971 DenseNet201 DC 0.988 0.961 0.980 0.970

KC 0.964 0.936 0.880 0.907 KC 0.964 0.918 0.900 0.909

MC 0.966 0.888 0.950 0.918 MC 0.978 0.941 0.950 0.945

PC 0.984 0.979 0.940 0.959 PC 1.000 1.000 1.000 1.000

SIC 0.994 1.000 0.970 0.985 SIC 0.998 1.000 0.990 0.995

Average 0.979 0.949 0.948 0.948 Average 0.986 0.964 0.964 0.964

ResNet101V2 DC 0.986 0.951 0.980 0.966 ResNet152 DC 0.992 0.971 0.990 0.980

KC 0.964 0.918 0.900 0.909 KC 0.968 0.912 0.930 0.921

MC 0.962 0.893 0.920 0.906 MC 0.974 0.939 0.930 0.935

PC 0.994 0.980 0.990 0.985 PC 0.996 1.000 0.990 0.995

SIC 0.990 1.000 0.950 0.974 SIC 0.992 1.000 0.980 0.990

Average 0.979 0.949 0.948 0.948 Average 0.986 0.964 0.964 0.964

ResNet101 DC 0.992 0.980 0.980 0.980 DenseNet169 DC 0.998 1.000 0.990 0.995

KC 0.962 0.909 0.900 0.905 KC 0.974 0.922 0.950 0.936

MC 0.972 0.913 0.950 0.931 MC 0.978 0.941 0.950 0.945

PC 0.998 1.000 0.990 0.995 PC 0.998 1.000 0.990 0.995

SIC 0.996 1.000 0.980 0.990 SIC 0.998 1.000 0.990 0.995

Average 0.984 0.961 0.960 0.960 Average 0.990 0.974 0.974 0.974
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metaplastic and most of the metaplastic cells were incor-
rectly classified as Koilocytotic cells as shown in the con-
fusion matrix of DenseNet169 in Fig. 4. This
experimental result tells us the need to increase the data
variation between the two classes.
During our experimental analysis we have also

inspected the size of the weight files of our proposed
pre-trained classification models. DenseNet169 has the
smallest weight size (Table 2 shows the size of the ori-
ginal weight file) which is also our best performing
model. However, still, the large weight file size makes it
unsuitable to deploy to mobile or edge devices. As a fu-
ture research direction we want to analyze how to de-
velop classification models having high accuracy with
minimal memory and computation consumption.

Finally, we compared our findings with the work done
by [17] with a similar dataset as our benchmark. In their
work, they presented an average accuracy of 95.35 ±
0.42% using VGG19 as a feature extractor and softmax
as a classifier. In this research, we achieved a normalized
average accuracy of 0.990 which is significantly better
than the benchmark work.

Conclusion
In this paper, we presented a single-cell CPS image clas-
sification model using pre-trained deep convolutional
neural network algorithms. The pre-trained models were
selected based on their top-1 accuracy on ImageNet
classification dataset. We have done detailed experi-
ments on the selected pre-trained DCNN image classifi-
cation models by fine-tuning and selecting network
hyperparameters to achieve best classification accuracy.
All the pre-trained DCNN image classifiers were fine-
tuned to suit SIPaKMeD dataset by changing the final
fully connected and output layer of the classifiers. From
the selected 10 pre-trained DCNN image classifiers,
DenseNet169 outperformed the other architectures and
achieved state-of-the-art performance compared to the
benchmark result generated by the SIPaKMeD dataset
creators. Using DenseNet169 a normalized average ac-
curacy of 0.990 was achieved which is greater than the
benchmark by approximately 3.70%. In the future, fur-
ther experimentation with small size and mobile DCNN
image classifiers is required to make the size of model
weights suitable for mobile and edge devices. Alongside
small size image classifiers, recent optimizers that
performed well in other domains such as Chimp
optimization algorithm (ChOA) [25] need to be explored
to achieve high performance. In addition, the proposed
pre-trained classification models should be tested in
datasets from different data acquisition environments in
order to increase their generalization capability of the
models in real-time clinical settings.

Materials and methods
The general flow diagram of the proposed method is il-
lustrated in Fig. 6. Our proposed method consists of data
acquisition and pre-processing, feature extraction using
different DCNN architectures and finally classifying the
input image of Pap smear into pre-defined five classes.
Each of the components in our method are described in
detail on the following subsections.

Dataset
In this study, a recently introduced publicly available
dataset named SIPaKMeD was used [17]. The dataset
contains a total number of 4049 single-cell images
that were manually cropped from 966 full-slide Pap
smear images. The cells were grouped based on their

Fig. 4 Confusion matrix for classification result on test dataset
using DenseNet169

Table 2 Proposed pre-trained classification models weight size
and their top-1 accuracy performance on the ImageNet’s
validation dataset

Model Size Top-1 Accuracy

NASNetLarge 343 MB 0.825

InceptionResNetV2 215 MB 0.803

Xception 88 MB 0.790

ResNet152V2 232 MB 0.780

InceptionV3 92 MB 0.779

DenseNet201 80 MB 0.773

ResNet101V2 171 MB 0.772

ResNet152 232 MB 0.766

ResNet101 171 MB 0.764

DenseNet169 57 MB 0.762
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abnormality and benign level into 5 classes -
superficial-intermediate cells (SIC), parabasal cells
(PC), koilocytotic cells (KC), dyskeratotic cells (DC)
and metaplastic cells (MC). The first two are normal,
the second two are abnormal and the last one is be-
nign. The distribution of images across the single-cell
image classes is seemingly uniform - 831, 787, 825,
793 and 813, respectively. Figure 5 shows representa-
tive images of the five classes.
We randomly partitioned the dataset into training,

testing and validation sets. We have used 12% of the
dataset for testing and the remaining 88% is used as
training and validation dataset with percentiles of 80 and
20, respectively.
We have pre-processed the dataset before feeding into

the classification network. We have performed image re-
sizing, image normalization, affine transformations, and
class balancing. All images (training, validation and test)
were resized to 128x128x3 to reduce the computation
overhead which is experimentally selected with optimal
performance. Image normalization was done to keep the
dynamic range of pixel intensities of the images between
0 and 1. Affine transformations were done on the train-
ing and validation sets to increase intra class variation
during training. The selected affine transformations were

flipping (both horizontally and vertically) and rotation
(ranged between − 450 and 450). Even though the cross-
class distribution is considerably uniform (the ratio be-
tween the classes with the smallest to the largest number
of images is approximately 0.95), we applied class weight
balancing on the training and validation dataset using
Eq. 1. At the time of training, the distribution of the
classes for individual batches turned out to be 0.97, 1.03,
0.98, 1.02 and 1.00 for SIC, PC, KC, MC and DC,
respectively.
wj ¼ S

n�s j --- Eq. 1.

Where, wj stands for the weight of the class j, S for the
total number of samples, n for the number classes and sj
for the samples in the class j.

Proposed approach
In this study, as illustrated in Table 2, we selected top 10
popular pre-trained DCNN image classifiers from Keras
applications [26] based on their top-1 accuracy tested on
ImageNet validation dataset. Top-1 accuracy refers to
the normalized performance of a model to predict
exactly the expected answer. For example, the probabil-
ity of NASNetLarge to predict exactly the first answer is
0.823 out of a unit scale. The selected modes were

Fig. 5 Sample images from the SIPaKMeD dataset: superficial-intermediate (a), parabasal (b), koilocytotic (c), metaplastic (d) and dyskeratotic
(e) cells

Fig. 6 The general pipeline of the research project: image acquisition, pre-processing, feature extraction and classification
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trained on ImageNet [27] - a dataset of 1000 classes of
natural images.
Recent advancements in DCNN has remarkably en-

hanced the performance of image classification algo-
rithms. However, their use for medical image
classification is challenging since training deep models
need an enormous amount of data. Transfer learning
has become one of the most popular techniques for en-
hancing the performance of machine learning models
which is used to adapt knowledge learned in source data
to target dataset. The approach will be important for
medical image classification where we cannot find
enough dataset to train from scratch.
In this study, considering the SIPaKMeD dataset size

which is small we have used pre-trained models on the
ImageNet dataset and fine-tuned them using the target
SIPaKMeD dataset. In other words, the weights of the
feature extraction base were re-trained again using the
CSP dataset to populate it with new weights and the
output layer was changed from 1000 classes down to 5
classes. To converge the output of the feature extraction
base from 4D tensor to a 2D tensor an average pooling
layer was introduced. At the end, fully connected links
were created between the pooling layer and the output
dense layer as indicated in Fig. 6.
In our experimental design, we took the pre-trained

weight files of the selected classification models and
fine-tuned them using SIPaKMeD dataset. We have
changed the final fully connected heads in all the models
with one fully connected layer with 512 neurons. In all
the models we replace the final classification layer which
is 1000 classes in the pre-trained models into 5 classes.
We have also applied affine transformation as a data
augmentation technique to increase the size of our lim-
ited data which helps to prevent the class imbalance
problems and model overfitting. All the experiments
were performed using Google’s free cloud platform, Kag-
gle, with NIvida Tx1008 GPU and 12 GB of RAM.

Evaluation metrics
We evaluated the performance of the classification
models using four objective evaluation metrics including
accuracy, precision, recall and f1-score. The metrics base
their mathematical foundation on the true positive (TP),
true negative (TN), false negative (FN) and false positive
(FP) values of the models’ prediction. A comprehensive
summary of the metrics is found in [28] and their math-
ematical formulation as follows.

Accuracy ¼ TP þ TN
TP þ TN þ FN þ FP

Precision ¼ TP
TP þ FP

Recall ¼ TP
TP þ FN

F1−Score ¼ 2� Precision�Recall
Precisionþ Recall

� �
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