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Abstract

Background: Glioblastoma Multiforme, an aggressive primary brain tumor, has a poor prognosis and no effective
standard of care treatments. Most patients undergoing radiotherapy, along with Temozolomide chemotherapy,
develop resistance to the drug, and recurrence of the tumor is a common issue after the treatment. We propose to
model the pathways active in Glioblastoma using Boolean network techniques. The network captures the genetic
interactions and possible mutations that are involved in the development of the brain tumor. The model is used to
predict the theoretical efficacies of drugs for the treatment of cancer.

Results: We use the Boolean network to rank the critical intervention points in the pathway to predict an effective
therapeutic strategy for Glioblastoma. Drug repurposing helps to identify non-cancer drugs that could be effective in
cancer treatment. We predict the effectiveness of drug combinations of anti-cancer and non-cancer drugs for
Glioblastoma.

Conclusions: Given the genetic profile of a GBM tumor, the Boolean model can predict the most effective targets for
treatment. We also identified two-drug combinations that could be more effective in killing GBM cells than
conventional chemotherapeutic agents. The non-cancer drug Aspirin could potentially increase the cytotoxicity of
TMZ in GBM patients.
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Background
Glioblastoma Multiforme (GBM) is the most aggressive
primary brain tumor with median overall survival (OS) of
14.6 months to 20.9 months in clinical trial setting and
11 months in all GBM population [1, 2]. Current standard
of care (SOC) treatments for GBM include maximum
safe surgical resection, radiation, temozolomide (TMZ)
chemotherapy and recently FDA approved tumor treat-
ing fields (Optune) for newly diagnosed patients as well
as bevacizumab (Avastin) for recurrent disease [2, 3].
However, GBM still stays as one of the most challenging
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cancers to treat due to its complexity or tumor hetero-
geneity, infiltrative nature and low efficacy of current
treatment modalities which results in short-term survival
rate. Therefore, novel approaches in the field of GBMdrug
discovery are needed to overcome current challenges in
medication results [4].
A few of the main challenges to GBM treatment are

resistance to temozolomide and recurrence of cancer after
radiation therapy. Understanding the genetic causes of
this resistance to temozolomide is essential while design-
ing therapies to robustly kill GBM tumor cells [5]. Study-
ing the genetic makeup of GBM tumors is also essen-
tial while choosing drug combinations for post-radiation
chemotherapy. By prioritizing the key genetic targets
involved in the progression of GBM, the best drug combi-
nation can be predicted.
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Fig. 1 Boolean representation of genetic regulatory networks. LaTeX package tikz version 3.14 is used is used to render this figure

Using a Boolean network approach to model the gene
regulatory networks, we design an application that will
predict the best drug combination to treat tumors given
their genetic profile.

Current state of drug discovery
Drug discovery requires the application of different con-
ceptual and analytical approaches to biological processes.
The development of a new drug involves identifying
new targets, validating said targets, biological synthesis
of drugs, considering the pharmacokinetics, studying the
potential side effects of the drug, testing, and clinical tri-
als. This process incurs high costs and does not promise

great success rates [6]. Recent research shows that even
non-cancer drugs can be repurposed to treat cancer; this
can offset costs and expand the therapeutic options. The
functional testing of all candidate genetic targets or candi-
date drug combinations becomes infeasible as the number
of candidates increases [7].
Molecular and cell biologists are responsible for identi-

fying and evaluating potential targets in the early stages
of drug development. The traditional method of ranking
drug targets depends on an extensive literature survey of
current research and treatment and the knowledge of the
researcher. The mental integration of data from a variety
of sources can prove to be challenging and is vulnerable to

Fig. 2 Stuck-at-0 fault. LaTeX package tikz version 3.14 is used is used to render this figure
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Fig. 3 Stuck-at-1 fault. LaTeX package tikz version 3.14 is used is used to render this figure

human error. Once a potential target is identified, it needs
to be validated through biological experimentation. This
trial-and-error method can prove too expensive in terms
of resources and time; limitations in the budget and acces-
sibility to appropriate testing facilities can also prove to be
obstacles [8].
On the other hand, the newer methods of prioritization

of drug targets require access to ample amounts of data
and are computationally expensive. High throughput data
techniques usually produce only one type of “-omic’ data
(genomic, proteomic, metabolomic). Data-based model-
ing using such data requires specific or proprietary data
processing and analysis platforms. The correlative nature
of this data makes it challenging to study the exact causal
relationships between different data points. Many genes
or proteins can have dual roles in biological processes,
such as the overexpression of STAT3 in several can-
cer cells. It might not be possible to determine through
such ”-omic” approaches whether STAT3 upregulation is
the cause or effect of cancer progression [8–10]. More-
over, the results of the computational models are not
easy to interpret and can even conflict with other large-
scale ranking techniques. A significant drawback of such
approaches is low experimental reproducibility, which
means that the ranking is subject to change each time the
algorithm is run [7].
We can take a closer look at the latest computational

models that predict the drug target ranking. Project Score
[11] seems to be a promising prioritization technique,
it uses a cellular fitness score to rank targets, and the

Table 1 Apoptotic factors

Pro-apoptotic factors Anti-apoptotic factors

BAK/BAX BCL2

BID BCLxL

NOXA MCL1

PUMA XIAP

CASP12 CFLIP

CASP8 TERT

DNADamage

data is collected using CRISPR/Cas9 screens. The poten-
tial demerit of Project Score is that it is not tailored to
a specific cancer, and it fails to represent all the cell line
mutations found in GBM. DrugComb [7] is a web-based
portal that performs large-scale integration of cancer drug
screen data for different cell lines; however, DrugComb
deals with the drugs as a whole and doesn’t provide infor-
mation of how individual genetic targets in the GBM
pathways could be ranked. The Genomics of Drug Sen-
sitivity in Cancer (GDSC) [12] database includes infor-
mation about drug sensitivity for different cell lines as
well as molecular markers of drug response. The GDSC
database considers only anti-cancer drugs. However, while
designing optimal cancer therapies, it makes sense to also
include the targets of non-cancer drugs [6].
Boolean network modeling offers a tradeoff between

data-based modeling and traditional biological methods.
Boolean networks are deterministic models that are based
on established biological knowledge and can be used to
ease the computational burden of the researcher. They
are representative of the current state of information that
is available for Glioblastoma and can be updated with
ease to reflect the latest research–unlike data-based tech-
niques, regenerating the ranking after modification does
not require substantial computational power. Our model-
ing technique seeks to bridge the gap between designing
computational models and understanding the biologi-
cal complexities of cancer. We include existing genetic
information as well as research about chemotherapeu-
tic, herbal, and non-cancer drugs. We seek to propose an
optimal and robust strategy to combat cancer.
In this work, a Boolean framework has been developed

to predict the ranking of combinations of targets in the
GBM pathways; this ranking is done on the basis of the

Table 2 Arrest factors

Pro-Arrest factors Anti-Arrest factors

DNADamage HDAC

CHK1 CDK4

CCND1

AR
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Fig. 4 Cell growth and stemness pathways. Simulink version R2020 is used is used to render this figure

ability of the target to induce GBM cell death and to curb
cancer cell proliferation. We used this methodology here
to develop a new tool for target-based drug discovery.

Methods
Biological pathways in glioblastoma
To support the design of targeted therapy for GBM, it is
necessary to model the cell signaling pathways involved
in the development of cancer. The biological pathways
responsible for cell survival and proliferation are dys-

functional in GBM. Genetic aberrations in the cell cycle,
such as those originating from mutations in CDK2NA,
p53, PTEN, and EGFR, are commonly found in GBM
cell lines [13]. Additionally, genes associated with the Fas
pathway that is responsible for extrinsic apoptosis (or
cell death), are also a feature of GBM tumors. Isocitrate
dehydrogenase (IDH) mutations can determine the prog-
nosis of a GBM patient, and the involvement of IDH
means the involvement of hypoxia-related and anaero-
bic metabolic pathways [13, 14]. Finally, the resistance to
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Fig. 5 Cell survival, inflammation and histone deacetylation pathways. Simulink version R2020 is used is used to render this figure

TMZ can be attributed to the DNA repair pathway, which
governs the methylation of Methylguanine-DNA Methyl-
transferase (MGMT); this motivates the investigation of
DNA methylation and histone deacetylation pathways
[15, 16]. The model represents the interconnection
between these pathways and the other pathways known
to be active in cancer cells like the calcium signaling,
endoplasmic reticulum stress-related, and stemness (Wnt,
Hedgehog, and Notch) pathways [17–19].
Our objective is to show the effect of a gene on cancer

cell fate. If a particular target gene or drug is said to be
effective in terms of cancer treatment, it should have at
least one of the following qualities :

• it should robustly kill cancer cells.
• it should stymie cancer cell growth or proliferation.

• it should abate tumor invasion and metastasis.
• it should curb tumor angiogenesis.
• it should attack the tumor-initiating cells.

To study the effect of the various genes on cancer cell
fate, we include the pathways responsible for angiogen-
esis, inflammation and mitochondrial apoptosis (or cell
death).

Boolean network modeling
The GBM cellular signaling pathways and drug interac-
tions with this network are modeled using the Boolean
network approach that has been used in our previous
works [20, 21]. Boolean networks are a class of models
that can capture the relevant behavior of biological sys-
tems and be used for therapeutic purposes. The Boolean
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Fig. 6 Apoptosis pathways. Simulink version R2020 is used is used to render this figure

network model for different cancers will be distinct; the
genetic interconnections for a particular type of cancer
vary based on the pathways involved in development of
the cancer. For example, the Boolean network model for
melanoma [20] does not include the stemness pathways
because the stemness genes are not known to play a major
role in tumor growth in the skin cancer.
A Boolean network model has three main elements:

nodes, edges and inputs, and three main logical functions:
AND, OR, andNOT. Each node is either a gene or a recep-
tor and can take only binary values, namely logical 1 and
logical 0. If a gene is expressed or up-regulated, it would
be in the ON state and quantified in the model by the
numeric value 1. If the gene is not expressed or down-
regulated, its node would be in the OFF state or quantified

by the numeric value zero. Every edge represents an inter-
action between the nodes of the network. Edges reveal the
regulatory relationship between genes, such as inhibition
or activation. These relationships can comprise of a sin-
gle logical function or a combination of logical functions.
Drugs, growth factors, cytokines, and other extracellular
stimuli are considered as inputs to this system. If any of
these inputs are incident on a particular node, then it takes
the value of one. Otherwise, the node is set at a value
of zero. Inputs can alter the behavior of nodes through
either activation or inhibition of a set of target genes.
Figure 1 shows how the genetic interactions in pathways
are represented using Boolean logic gates.
In order tomodel a drug in a Boolean network approach,

we need to know the targets and the methods of action
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Fig. 7 Cell cycle arrest and angiogenesis pathways. Simulink version R2020 is used is used to render this figure

of the drug. The drug is an input that activates or inhibits
its genetic target. Note that one drug can act on multiple
targets and can simultaneously activate one target while
inhibiting another. If a drug input is ON, then it activates
its target through an OR action and inhibits its target
through the NOT gate; the two types of actions can be
seen in Figs. 2 and 3.
Stuck-at faults are introduced to the system to model

genetic abnormalities. Irregularities in the behavior of a
gene can be caused by genetic mutation and can poten-
tially lead to cancer. Cancer cellular pathways have dif-
ferent proliferation and apoptosis behavior than normal
cellular signaling. A stuck-at fault is a node that remains
stuck at a particular value regardless of the value of the
input it receives. Genes are at a stuck-at-0 fault if they
are permanently deactivated. As can be seen in Fig. 2, a
stuck-at-0 fault sets the value of the gene at 0, and the drug
corrects this by setting it back to its original value. Simi-
larly, the stuck-at-1 fault occurs if a gene is always in the
active state. In Fig. 3, the stuck-at-1 fault forces the gene
to take on a value of one, whereas the drug stops this and
restores normal function to the node.
Finally, outputs are nodes that are representative of can-

cer cell fate. These are nodes within the Boolean circuit

whose value is measured to test the effect of input on
the circuit’s behavior. We will combine the values of these
output nodes into one output metric that represents the
theoretical efficacy of the drug or target. The theoretical
efficacy will consider the anti-cancer ability of the drug
or target to drive the circuit to a desirable value, mainly
with respect to the ability to induce cell death or stop cell
proliferation.

Prioritization of genetic targets
Protein or mRNA modulation techniques are employed
during target validation, where the target is altered by
an external agent, and the change in the cellular viability
is measured [9]. Cellular viability is the measure of live,
healthy cells in the population of cells under experiment,
and is inversely proportional to the efficacy of the genetic
target.
As an alternative to protein or RNA modulation, we

simulate the modulation of the genetic target andmeasure
the change in the output metric. Assume that the Boolean
circuit has N nodes numbered from 1 to N. In each run
of the simulation, we force a particular node in the circuit
to one, which is equivalent to inducing expression of the
corresponding gene, and we measure the change in the
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Fig. 8 Cell proliferation pathways. Simulink version R2020 is used is used to render this figure

output. We will performN runs with node i = {True ∀ i ∈
[ 1,N] }. Similarly, we follow the same steps by forcing
every node to zero and measuring the effect of inhibition
of one gene at a time. We will perform N runs with node
i = {False ∀ i ∈[ 1,N] }. As a result, we have a list of
2N measurements of the output metric, each correspond-
ing to a particular Boolean combination in the network.
Sorting the list on the basis of the output metric gives us
the key intervention points. The most potent intervention
point has the maximum effect on the output metric. This
is useful while developing single-target therapies.

This technique can be extended to measure the effect
of modulating more than one target at a time. We can
simulate the effect of altering combinations of targets
by forcing groups of nodes to a set of logical values in
every run. This is useful while developing multiple-target
therapies.
This method can also resolve the controversial dual

roles of certain genes. First, we force the node of inter-
est to one (expression) and note the value of the output
metric. Next, we force the same node to zero (inhibi-
tion) and compare the result to the previous observa-
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Fig. 9 DNA damage and repair pathways. Simulink version R2020 is used is used to render this figure

tion. For instance, a comparison of the two values will
tell us whether inhibition or expression of that par-
ticular gene should stop the progression of the GBM
tumor.
We simulate protein and mRNA modulation of var-

ious genetic targets in Glioblastoma to isolate the
best possible drug combination for treatment of that
cancer.

Results
The static Boolean network in this work maps a set of
inputs to a set of outputs; the input and output vectors are
given in Eqs. (1) and (2) below. The inputs to the Boolean
network are the growth factors, cytokines and extracellu-
lar stimuli relevant to the development of GBM. A change
in input can cause a change in the output metric. The out-
puts are a mixture of apoptosis factors as seen in Eq. (3)
and genes involved in the cell cycle arrest shown in Eq. (4).
For all vectors, i.e input, output, fault and drug vectors,
a one in the ith column of the vector implies that the ith
element is active.

Inputs = [ Shh, Wnt, GF, IL17, Cytokine, TNF, PSEN, TGFb, (1)

S1P, Antigen, Dopamine, GABA, Ach, HT, PGE2, EDN1,

Norepinephrine, F2, Estrogen, Testosterone,

Progesterone,NF1]

The Tables 1 and 2 shows the classification of the apop-
totic and arrest factors respectively. The fate of the cell
depends on the value of these apoptotic and arrest factors.

Outputs = [ Apoptotic Factors, Arrest Factors] (2)

Apoptotic Factors = [ BAK, BAX, BID,NOXA, PUMA,

CASP12, CASP8,DNADamage] (3)

Arrest Factors = [ DNADamage, CHK1,HDAC,

CDK4,CCND1,AR] (4)

For clarity of exposition, the Boolean network is divided
into 8 parts as shown in Figs. 4 through 11. The yel-
low blocks in the figures represent the inputs to the cells,
the magenta blocks represent the genetic mutations com-
monly found in GBM cell lines and the blue blocks repre-
sent the interconnections between the different pathways.
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Fig. 10 G-coupled protein and calcium signaling pathways. Simulink version R2020 is used is used to render this figure

Figure 4 shows the cell growth pathways and their cross
talk with the stemness pathways namely Wnt-βCatenin,
Hedgehog and Notch. The histone deacetylation pathway
and its interaction with PI3K/mTOR and inflammation
pathways is shown in Fig. 5. The output factors that con-
trol cell proliferation, cell cycle arrest, angiogenesis and
cell death are found in Figs. 6, 7 and 8 respectively. The
DNA damage and repair network in Fig. 9 captures the
commonly occurring faults in GBM. Figure 10 shows how
the g-coupled protein receptors influence calcium signal-
ing and cAMP-PKA pathway in the brain. The hypoxia
and endoplasmic reticulum stress-related pathways are
active in several cancers including GBM and are shown in
Fig. 11.

Output metric
The output factors have been combined into one output
metric to calculate the efficacy of the drug or target. The
metric used is given in Eq. (7) and is a combination of the
apoptosis ratio in Eq. (5) and the arrest ratio in Eq. (6).

Apoptosis Ratio =
∑

Pro-Apoptotic factors
∑

Anti-Apoptotic factors
= Rapo (5)

Arrest Ratio =
∑

Pro-Arrest factors
∑

Anti-Arrest factors
= Rarr (6)

Theoretical Efficacy = Napo
N

Rapo + Narr
N

Rarr (7)

The apoptosis ratio Rapo denotes the relative change in
cell death for each different set of inputs and Napo is the
number of pro-apoptotic factors and anti-apoptotic fac-
tors in total. The arrest ratio Rarr denotes the relative
change in cell cycle progression for each different set of
inputs and Narr is the number of pro-arrest factors and
anti-arrest factors in total. Finally, N = Napo + Narr is the
total number of output factors. In both Eq. (5) and (6),
the symbol ∑ stands for the average of the factors. The
theoretical efficacy metric as a whole measures the influ-
ence of a particular node on both cell death and cell cycle
arrest.

Simulation results
Each GBM cell line has different genetic mutations. We
consider 9 GBM cell lines, and their corresponding cellu-
lar mutations are given in Table 3. This information has
been obtained using the GDSC database [12].
The set of input conditions should reflect that the stem-

ness and growth pathways are active in the cancer cells,
and the immune system has started to respond to cancer.
The stemness-related genes Shh and Wnt are responsi-
ble for activating the stemness pathways, as can be seen
in Fig. 4; we can also see how the growth factors GF
contribute to tumor cell survival. The immune system
response is controlled by cytokines, including IL17, TNF,
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Fig. 11 Hypoxia and endoplasmic reticulum stress pathways. Simulink version R2020 is used is used to render this figure

and TGFb, as shown in Figs. 5 and 10. The tumor sup-
pressor NF1 is active for the purpose of controlling tumor
growth.
For this purpose, the input vector for the

simulations has been assigned the value
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1]; this implies that

Table 3 GBM cell lines with different mutations.

Cell line name Genetic mutations Fault type (stuck-at
0/1)

42-MG-BA p16INK4a, p14ARF, PDGFR,
PTEN, p53

0,0,1,0,0

A172 p16INK4a, p14ARF, EGFR,
p53

0,0,1,0

AM-38 p16INK4a, p14ARF, BRAF 0,0,1

CCF-STTG1 EGFR, MDM2, PTEN 1,1,0

LN-229 FasL, p16INK4a, p14ARF,
EGFR,Grb2

0,0,0,1,1

T98G FasL, p16INK4a, p14ARF, p53 0,0,0,0

U-87-MG FasL, p16INK4a, p14ARF,
PTEN, NF1

0,0,0,0,0

YKG-1 p16INK4a, p14ARF, p53,
PTEN, PI3K, NF1

0,0,0,0,1,0

Shh, Wnt, GF, IL17, Cytokine, TNF, TGFb and NF1 are
all set to one and the other inputs are set to zero. The
other inputs such as Dopamine, GABA, Estrogen and
other hormones do not have a direct effect on cell death
or arrest; the genes downstream of these inputs interact
with the cancer-related pathways, but do not play a
significant role in glioblastoma development. Note that
our prioritization method ranks each gene based on its
effect on the output metric, irrespective of whether the
upstream input is active or inactive.
In order to eliminate any bias based on the choice of

inputs on drug prioritization, we normalize the theoret-
ical efficacy by the ’NO FAULT NO DRUG’ value. The
’NO DRUG NO FAULT’ value is the value of fault free
apoptosis and arrest; it is a number that captures the the-
oretical value of cell death and arrest in the absence of
drugs or mutations. In the presence of mutations, such
as in U-87-MG, the output value of the network falls to
1.3, which is lesser than the fault free value. For our cho-
sen set of inputs, the ’NO DRUG NO FAULT’ value is
2.25, and we divide the value of the theoretical efficacy
of a drug by 2.25 in order to measure to what degree can
the drug restore the output of the network to its fault free
value.
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Fig. 12 Prioritization of single targets. Green color represents the nodes that need to be activated and red color represent the nodes that need to be
inhibited. LaTeX package tikz version 3.14 is used is used to render this figure

Prioritization of genetic targets for the GBM cell line u-87
MG
We will demonstrate the results of our ranking technique
given the genetic profile of a cell line. For example, in
GBM cell line ’U-87 MG’, there are 5 faults in the cell line,
and the corresponding faults vector is shown in Eq. (8).
All the faults in this fault vector are stuck-at-0 faults. We
shall pass the value [ 0, 0, 0, 0, 0] forcing the relevant nodes
to zero, which means that all the 5 faults are active and
that FasL, p16INK4a, p14ARF, PTEN, and NF1 are all
down-regulated.

Fault =[ FasL, p16INK4a, p14ARF, PTEN,NF1] (8)

Similarly, the fault vector for each cell line, given in
Table 3, is passed one at a time to the Boolean network
and we produce a ranking of the best targets to attack the
tumor growth for that mutation profile. Figure 12 shows
the results of prioritization for single genetic targets;
’High’ implies greater priority of the target. For instance
for the cell line CCF-STTG1, MDM2 and p53 are two tar-
gets that have the same priority as each other, but have

Fig. 13 Prioritization of pairs of targets. Green color represents the nodes that need to be activated and red color represent the nodes that need to
be inhibited. LaTeX package tikz version 3.14 is used is used to render this figure
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Fig. 14 Drug Sensitivity for Anti-Cancer Drugs. Python package Matplotlib version 3.1.1 is used is used to render this figure

higher rank than NFKB and BCLxL. In Fig. 12, red text
implies that the target should be inhibited and green text
implies that a target should be expressed.We can use these
results to find drugs that act on these genetic targets and
have the desired action on those targets. For example, if
we want to design a single target therapy with the best
efficacy for a patient with genetic mutations similar to

YKG-1, we should look for a drug that activates p53. The
prioritization of pairs of targets is shown in Fig. 13.

Drug sensitivity for anti-cancer and non-cancer drugs
The second simulation is run to test drug sensitivity for
each different GBM cell line. The data for the drugs and
their targets is from the GDSC database and DrugBank

Fig. 15 Drug Sensitivity for Non-Cancer Drugs. Python package Matplotlib version 3.1.1 is used is used to render this figure
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Fig. 16 Increasing Sensitivity to Temozolomide. Python package Matplotlib version 3.1.1 is used to render this figure
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Table 4 Best performing two-drug combinations

Rank Combination

1 Palbociclib, Aspirin

2 Aspirin, AT7519

3 Palbociclib, LCL161

4 LCL161, AT7519

5 Ruxolitinib, Palbociclib

6 Ruxolitinib, AT7519

7 Palbociclib, NODRUG

8 NODRUG, AT7519

9 XMD1499, Palbociclib]

10 XMD1499, AT7519

[12, 22]. Additional file 1: Table S5 shows the drug with
its corresponding targets. Figure 14 shows the drug sen-
sitivity for anti-cancer drugs as predicted by the Boolean
model; each row corresponds to a GBM cancer cell line,
and each column is a drug. Figure 15 shows the drug sen-
sitivity for non-cancer drugs as predicted by the Boolean
model. In both Figs. 14 and 15, a white cell implies that
the drug does not work on that particular cell line, and a
purple cell stands for a drug with high efficacy. We can
see that Aspirin seems to work on many GBM cell lines.
Light blue cells are the drugs that do not cause a signifi-
cant change in the value of the theoretical efficacy metric.
Temozolomide, in Fig. 14, does not have much effect on
any of the GBM cell lines except AM-38 or LN-229; this
might indicate that the other cell lines have developed
resistance to TMZ.

Increasing sensitivity to temozolomide
We ran a simulation to test whether it is possible to reduce
the resistance to TMZ in GBM cell lines. Figure 16 shows
that only the combination of Aspirin and TMZ is able to
increase the sensitivity of the cancer cells to TMZ in all of
the cell lines, but the rest of the drugs seem to be unable
to have a significant effect. Cell lines AM-38 and LN-229
have a slightly greater sensitivity to TMZ than the other
cell lines. This tells us that while treating a patient with a
genetic profile similar to any of the other cell lines we have
considered, we might need to look at other two-drug or
multi-drug therapies.

Best two-drug combinations for GBM treatment
We can predict the best two-drug combination of anti-
cancer and non-cancer drugs that can work for the LN-
229 and AM-38 GBM cell lines. We chose these two
cell lines since they are sensitive to most of the drugs
in our analysis, as we saw in Fig. 14. Table 4 shows

only the top 10 two-drug combinations. The best two
combinations are Aspirin + Palbociclib and Aspirin +
AT7519; both these combinations have equal efficacy and
perform 2% better than the next best combination. It
is interesting to note that Aspirin features in the top
10 combinations, it is a non-cancer drug and not usu-
ally considered while designing drug therapies for GBM
treatment.

Discussions
Prioritization of genetic targets for any GBM cell line
We employed our prioritization technique to predict most
effective targets for the treatment of the GBM cell lines.
Using this functionality, we could move towards a person-
alizedmedicine approach. The patient’s genetic mutations
could be fed into the algorithm as faults, and we could
perform the prioritization task to identify the key inter-
vention points specifically effective for that patient. We
could use the prioritization results to design new drugs or
drug therapies to treat GBM.
We can predict the effectiveness of a N-target treatment

using the prioritization method. If we rank all possible
combinations of targets on the same scale, it is possible to
determine the optimal number of intervention points for
treatment of GBM.

Drug sensitivity for anti-cancer and non-cancer drugs
We compared the theoretical efficacy for several anti-
cancer and non-cancer drugs. This functionality is similar
to the one available in GDSC. Additionally, we performed
the sensitivity analysis for non-cancer drugs. It is was
interesting to see that non-cancer drugs could potentially
be effective in killing or stopping the growth of cancer
cells.

Best two-drug combinations for GBM treatment
We ranked all possible two-drug combinations for the
given set of anti-cancer and non-cancer drugs. This func-
tionality could be extended to test the combination of n
number of drugs and then to find the optimal drug com-
bination (from the existing drugs available in the market)
customized to the patient’s genetic profile.

Conclusion
We modeled the biological pathways instrumental in
Glioblastoma Multiforme and identified drug therapies
that could prove to be effective for GBM treatment. We
predicted a prioritization of genetic targets given the
genetic profile of a patient. The Boolean model predicts
that Aspirin, a non-cancer drug, could potentially reduce
the resistance to Temozolomide in GBM patients. It could
also be effective in combination with other chemother-
apeutic drugs. Finally, we predicted two-drug therapies
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that could be more successful than the currently used
treatment strategies.
The result of this study in drug combination ranking

can be utilized in future GBM therapeutic experimental
research. It was shown that the combination of Aspirin
and TMZ can have a significant improvement in our
desired outcome to increase the efficacy of GBM treat-
ment efficacy. Several observational and biological studies
have shown the anti-cancer effects of Aspirin for different
cancers including glioblastoma [23–25]. It is shown that
Aspirin can induce cell cycle arrest [26] which is consis-
tent with our findings here. Therefore, our model not only
confirms the benefits of Aspirin in GBM treatment but it
also provides strategies of how to effectively use Asprin in
drug combination therapies.
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