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engineering applications
Christina N. M. Ryan1,2†, Meletios N. Doulgkeroglou1,2† and Dimitrios I. Zeugolis1,2,3*

Abstract

Electric fields are involved in numerous physiological processes, including directional embryonic development and
wound healing following injury. To study these processes in vitro and/or to harness electric field stimulation as a
biophysical environmental cue for organised tissue engineering strategies various electric field stimulation systems
have been developed. These systems are overall similar in design and have been shown to influence morphology,
orientation, migration and phenotype of several different cell types. This review discusses different electric field
stimulation setups and their effect on cell response.
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Background
Endogenous electric fields (EFs) are involved in the organ-
isation and development of tissues, as well as in their regen-
eration following injury [1, 2]. Disruption of endogenous
EFs leads to abnormalities [3, 4] and slows down wound
healing processes [5]. Physiologically speaking, for example,
a polarised epithelium transports ions that maintain a
transepithelial potential [6]. When an injury occurs, the
transepithelial potential is severely disrupted and an endo-
genic wound EF occurs that drives epithelial cells to the
wound for healing purposes [7]. The magnitude of en-
dogenous EFs varies as a function of species, tissue, location
and developmental stage [e.g. 0.02–0.04 V/cm during neo-
cortical activity in ferrets [8]; 0.1–0.2 V/cm in different
anatomical parts of axolotl embryos during their develop-
mental stages [9]; 0.42 V/cm in wounded rat corneas [10];
0.42 V/cm in sliced tips of hindlimb digit of Notophthalmus
viridescens [11]; 1.1–1.8 V/cm in wounded mouse and

human skin [12]; 1–2 V/cm in small skin cuts of cavies
[13]; 20–30mV/cm in mice brain [14].
Considering the importance of EFs in physiological tis-

sue function; disease manifestation and progression; and
regeneration, research efforts have been directed towards
utilising EFs to study cell response in vitro as a means to
better understand the mechanism of action of EF-
induced stimulation and develop functional therapeutic
interventions. It has now become apparent that EF
stimulation in vitro modulates cell morphology, orienta-
tion, migration and phenotype commitment, as well as
extracellular matrix (ECM) synthesis and orientation
[15, 16] and in vivo promotes ECM synthesis [17], mod-
ulates ECM deposition [18] and accelerates wound heal-
ing [19]. To describe the influence of EF stimulation on
cell response, the theories of galvanotaxis (i.e. the
process of preferential cell migration towards the anode
or the cathode) and galvanotropism (i.e. changes in cell
morphology) have been introduced [20, 21]. Over the
years, various EF apparati have been used to study the
influence of EF stimulation on cell response in vitro with
variable degree of complexity and efficiency, jeopardising
comprehensive investigation of this in vitro microenvir-
onment modulator. Thus, this review provides and over-
view of EF setups, describes the function of their most
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important components and discusses advancements and
shortfalls in EF stimulation in controlling cell function.

Main text
Electric field cell stimulation setups
In vitro EF stimulation started with a simple setup,
where two electrodes were placed at the bottom of a cell
culture well and the cells were seeded in between
(Fig. 1a). Trial and error experiments (e.g. to avoid
media evaporation, avoid electrode degradation products
contaminating the cells) have resulted in the current
setup, which includes a chamber that contains the media
and the cells, with agar bridges transferring the charge
from the electrodes immersed into electrolytes to the
cell media (Fig. 1b). In the spirit of automation and scal-
ability, parallel setups [22] have been developed that
allow for multiple experiments to be conducted simul-
taneously (Fig. 1c). More complex systems, such as bio-
reactors capable of combining EF stimulation with
mechanical loads [23], have also been developed (Fig.
1d). In the era of miniaturisation, compact, closed-
system microfluidic devices (Fig. 1e) that provide more
effective control over the uniformity of the EF, mitigate
the Joule heating effect, reduce the dimensionality of
equipment and offer high data output have also been
realised [24, 25].
Independently of the setup, poly(methyl methacrylate)

(PMMA) [26–29] and poly(dimethylsiloxane) (PDMS)
[30–36] are mostly used for the fabrication of galvano-
taxis devices, although some devices have been made
from glass [33] or plastic [37]. Further, all systems have

a window (usually a glass slide / coverslip), which allows
visual assessment of cells before, during and after EF
stimulation [38–40]. When chamber size permits, the
entire chamber is placed on the stage of an inverted
microscope and cell behaviour is observed directly dur-
ing experiments [41–46]. In the subsequent sections the
main components of most EF cell stimulation apparatus
are discussed.

Galvanotaxis chamber
Galvanotaxis chambers are constructed to allow flow of
constant electric current directly over the cells within a
channel. An early study used a trough that was created
by placing two parallel glass coverslips in the centre of a
petri dish. The cells were seeded in the created trough
and a closed EF was created by connecting the cell cul-
ture media with the agar salt bridges to the solution with
the electrodes [47]. Due to this simple construction,
similar chambers composed of glass slides or coverslips
separated by acetate or silicon spacers and held together
with silicone grease or adhesive have been fabricated
[48–54]. To reduce time, effort and costs associated with
continuous chamber fabrication, a modular chamber de-
sign comprised of parallel plates that allow glass slides
or coverslips plated with cells to be inserted and re-
moved at ease without affecting the chamber structure
have been developed using various materials (e.g. plexi-
glass, polycarbonate, acrylic, graphene and PMMA) [55–
61]. PDMS is featured in several setups either as a pri-
mary material from which chambers may be excised [62]
or due to its insulating properties that allow independent

Fig. 1 Schematic illustration of various galvanotaxis setups. a The simplest setup. b The most common setup. c Parallel setup that allows multiple
experiment simultaneously. d Multifactorial setup that allows simultaneous application of electric field stimulation and mechanical loading. e
Miniaturised, closed system microfluidic setup
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electrical stimulation of rows of wells [63]. Further, its
versatility of stiffness modification [64], allows for simul-
taneous assessment of substrate rigidity and EF stimula-
tion on cell response. To assist cell adhesion, surfaces
used as channels for cell seeding are often coated with
ECM proteins (e.g. laminin, fibronectin, collagen) [65–
70] and to improve cell motility and alignment, micro-
grooves are etched onto glass / quartz slides [71–73].

Electrodes
Electric current is generally passed through the galvano-
taxis chamber by placing electrodes into phosphate buff-
ered saline (PBS) or Steinberg’s solution reservoirs, from
which agarose salt bridges form a conducting pathway to
the chamber with the cathode connected at one side of
the chamber and the anode to the other [46, 47]. Con-
ductive bridges, composed of plastic or glass tubing are
filled with agarose (2–4%) and can be of different lengths
[from 6 cm [74, 75] to 35 cm [55, 59], although most
setups incorporate bridges of 15 to 20 cm [76–78]].
Some groups have even bent tissue culture pipettes into
U-shapes and used them as agar-salt bridges, which have
the added advantage of already being sterile [79]. Sys-
tems with reduced size agar bridges embedded within
the galvanotaxis chamber [35, 36] or even setups without
salt bridges, which facilitate the design of reduced size
devices [80] have also been reported, albeit not exten-
sively. The bridges also act as safeguards to reduce heat
exposure of cells via Joule heating of the chamber [75]
and prevent electrolysis products (e.g. metal ions) [81]
produced at the electrodes from contaminating cells
within the chamber [82]. Aluminium [83], carbon [84,
85], copper [86, 87], platinum [60, 88] and stainless-steel
[89, 90] have been used as electrodes across a range of
direct current (DC) EF stimulation systems, however
silver-silver chloride (Ag/AgCl) electrodes are the most
commonly used [46, 47]. These are favoured as the only
species involved in the electrochemical reactions at the
electrode surface are chloride ions, thus eliminating un-
wanted reactions associated with electrodes, such as
platinum [91]. They convert electron flow to a chloride
ion flow from the cathode to the anode through the con-
ducting pathways. Ag/AgCl electrodes can be fabricated
from silver wire by soaking for up to 1 h in a hypochlor-
ite / bleach solution, or in 1M HCl and then chloridised
for 30 min at a current of 5–10mA cm2 [59, 91]. These
electrodes can then be stored in distilled water or PBS
for several weeks. In some setups, the electrodes have
been integrated into the galvanotaxis chamber by coiling
them about 5 cm into agarose embedded within the plat-
form [91]. This saving in size of the setup allows the
platform to be efficiently placed within a live cell cham-
ber, whereby humidity, CO2 partial pressure and
temperature can be controlled relatively ease.

Power supply and electric field stimulation regimes
EF stimulation utilises either DC or alternating current
(AC). DC is a steady mono-flow / unidirectional current,
whereas AC has a sinusoidal form and constantly
switches direction. As in the extracellular space of plants
and animals, DC signals are primarily observed [92], the
vast majority of EF cell stimulation studies use DC.
Nonetheless, AC has also been selected to either com-
pare its effect with the frequently used DC stimulation
[93], or to recreate physiological EFs, in the case of the
central nervous system that neurons are exposed to os-
cillating endogenous EFs [94, 95]. Over the years, nu-
merous cell types have been exposed to different EF
strengths (0–10 V/cm) and stimulation duration (0–72
h) (Table 1). To achieve the required EF strength, DC
power supplies (e.g. Keithley SourceMeter®) have been
used that work with DC currents of 0.0–0.3 mA and
generate EFs of 0–6 V/cm [97, 98]. Eight-channel
programmable power simulators (e.g. Master-8, AMPI)
[61] generating EFs up to 4.5 V/cm, multi-potentiostats
(e.g. CH1040A, CH Instruments) generating EFs of 0.1
V/cm and currents of 0.0–0.1 mA [86] and the com-
monly found in laboratory setups gel electrophoresis
(e.g. FB600, Thermo Fisher Scientific) power sources
[58, 99] have also been used with an EF range of 0–10
V/cm. For the measurement and adjustment of current
and field strength during a stimulation, multi-meters can
be positioned respectively in series and in parallel with
the chamber [55]. In addition, current density and correl-
ating EFs have been altered not only by adjusting applied
current or voltage, but also by altering resistance through
the channel by varying the channel widths (0.5–3.0 cm)
[86]. For the application of AC EFs, function (waveform)
generators that provide both type of currents may be used
(e.g. Precision 4011A, PASCO Scientific) [93] with the AC
component ranging less than the regimes observed in DC,
usually within 0–1 V/cm [58, 100].

Generated forces during a galvanotaxis experiment
When a cell migrates in any substrate, its displacement
gives rise to three-dimensional tractional forces [101],
which is also the case for EF assisted migration. During
EF stimulation, cells are exposed to forces from the EF
itself and from the culture substrate. The stress can be
perpendicular and horizontal to the direction of the EF.
Forces also develop between the surfaces of the cells, as
they touch each other in the restricted space of a galva-
notaxis chamber during a collective migration. The
interaction of the cells leads to a parallel to the direction
shear stress and a perpendicular to the direction normal
stress [102]. It has been shown that by the onset of EF in
a keratinocyte monolayer [103], the intercellular stress
component in the perpendicular axis to the EF direction
increases significantly in comparison to the stress
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component in parallel to the EF direction and that mi-
gration is independent of the reorientation of the inter-
cellular stress. In addition, the flow, which can be
hypothesised as laminar, applies hydrodynamic forces to
the cells. These forces can be calculated by the hydro-
dynamic equation of laminar flow mechanics.
The exact mechanism regarding galvanotaxis-induced

motility is still unclear. In literature, different hypotheses
have been formulated regarding the decisive factor for
cell migration during galvanotaxis. These hypotheses in-
clude the effect of flow, due to hydrodynamic cell forces,
on the cell membrane [104]; the activation of electro-
taxis, owed to change of cell membrane polarity, which
in turn is driven by an asymmetric local concentration
of ions [105]; and the electrophoresis of charged mem-
brane components (e.g. proteins) [106, 107]. The nor-
mally occurring hydrodynamic forces alone have not
been proven to contribute to directional migration, since
cells were observed to move randomly in the absence of
an EF in almost all the reported experiments [54, 103]
However, when an external shear stress stimuli was ap-
plied, migration was retained in the preferential direc-
tion even without the application of an EF [35]. A recent
work investigated the role of integrins by testing hamster
ovary modified cell lines that express specific human
integrins and concluded that different subsets of integ-
rins may promote normal or reverse directional migra-
tion during galvanotaxis, thus highlighting the
importance of the intracellular domain with cell migra-
tion [108]. It should be noted that the strength of the EF
increases the aligned directed locomotion of the cells, as
it has been shown in numerical simulations [109] and
experimental data [110, 111]. However, differences were
observed [83] in the time of response and the required
EF intensity needed to trigger migration for clustered
and isolated cells. It should be noted that according to
the cell type, cells may show different preferences in an-
odal or cathodal directed migration (Table 1).

Electric field stimulation in vitro and in vivo
Although the influence of DC and AC EFs on cell re-
sponse in vitro and in vivo has been the subject of many
investigations (Table 1), it is worth noting that most
studies focus on the alignment and migration patterns
that DC EFs induce to cells and only a few studies have
assessed the influence of EFs on cellular functions
in vitro and tissue response in vivo. In general, subject
to the cell population, DC EF of up to 10 V/cm and for
up to 72 h are efficient in controlling cell orientation
and migration [71, 72], increase cell proliferation [112,
113]; and do not affect cell metabolic activity and viabil-
ity [114–117]. Stem cell differentiation has also been
studied; for example, DC EFs of 0.1–1.0 V/cm [118, 119]
and pulsed DC EFs of 50 Hz and 6 V/cm peak-to-peak

amplitude for 6 h per day [120] have been shown to
favour osteogenic differentiation.
With respect to AC EF stimulation, although it has

been shown to affect cellular functions, alone has not
been shown consistently to result in controlled cell
orientation and migration. For example, AC EFs of 10
Hz and 50 Hz have been shown to sustain a more imma-
ture phenotype in porcine neural progenitor cells, with-
out promoting alignment and affecting proliferation
[100]. AC EF stimulation (20 mV/cm, 60 kHz, 40 min
per day for 20 days) has also been shown to not affect
cell morphology and metabolic activity in human stem
cell cultures and to increase osteogenic differentiation
[121]. Regarding differentiation, AC EFs have been used
for both osteogenic [122–124] and chondrogenic [125,
126] differentiation of stem cells. When mouse neural
stem cells were encapsulated in alginate hydrogel beads
and subjected to AC EFs (0.1 to 10 Hz; 2, 4, 16 V/m; 14
and 21 days), it was reported that 1 Hz frequency en-
hanced viability, whilst differentiation was promoted or
inhibited subject to culture time and EF frequency (cell
morphology analysis was not conducted) [127].
When DC was directly compared to AC in rat neural

stem/progenitor cell cultures, it was found that differen-
tiation and migration were enhanced and viability was
decreased in DC EFs, whilst AC EF had no effect [58].
Interestingly, in human keratinocytes isolated from neo-
natal foreskin cultures, AC led to random migration; DC
alone and DC combined with AC resulted in cathodal
direction; and DC combined with 160 Hz AC resulted in
enhanced migration in comparison to DC alone and DC
combined with 1.6 Hz AC [93]. Other than cell morph-
ology and migration analysis studies, more in depth bio-
logical analysis studies are required to clearly illustrate
whether there are any beneficial effects in combing DC
with AC EF stimulation.
In in vivo setting, preliminary studies advocate the use

of EF stimulation. For example, the migration of human
peripheral blood lymphocytes was enhanced in mouse
ear skin model when an external EF was applied [37].
EFs have also been shown to promote migration and dif-
ferentiation of neural progenitor cells in a rat model of
chronic-phase ischemic stroke [128]. In a similar man-
ner, electrodes were inserted in a rat brain and stimu-
lated transplanted human neural progenitor cells,
resulting in directed migration and increased motility
[129]. Furthermore, transvaginal electric stimulation in
female mice has shown activation and proliferation of fi-
broblasts [130].
In clinical setting, electric stimulation has been used in

different instances with mixed outcomes. Recent studies,
for example, include the use of electric stimulation to
treat neurogenic bowel dysfunction in patients that suf-
fered spinal cord injuries, but without consistent results
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[131]. On the other hand, EF stimulation resulted in a
reliable recovery of motor functions in patients experi-
enced a stroke [132], an improvement in visual abilities
by the placement skin electrodes in patients with retin-
itis pigmentosa [133] and accelerated wound healing
[19], collectively indicating the potential of EF stimula-
tion in reparative medicine.

Conclusions
Electric field stimulation is continuously gaining pace as
a means to control cell orientation, migration and
phenotype in vitro and in vivo. Direct current electric
fields (up to 10 V/cm) are favoured among investigators,
as such signals are primarily encountered in the extracel-
lular space of plants and animals. Although variable in
complexity galvanotaxis chambers have been used over
the years, the most popular setups are comprised of glass
slides for cell seeding, transparent polymers that allow
real-time cell visualisation, Ag/AgCl electrodes that
eliminate toxic electrode degradation products and agar-
ose salt bridges in phosphate buffered saline to prevent
them from drying and to stabilise electrode potentials. It
is worth noting that despite the promising in vitro data,
only a few studies have assessed the influence of electric
field stimulation in vivo and in clinical setting. Standard-
isation and automation of the processes will allow more
intense investigation of electric field stimulation in the
years to come.
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