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Abstract

There is increasing evidence for the role of environmental endocrine disrupting contaminants, coined
obesogens, in exacerbating the rising obesity epidemic. Obesogens can be found in everyday items ranging
from pesticides to food packaging. Although research shows that obesogens can have effects on adipocyte
size, phenotype, metabolic activity, and hormone levels, much remains unknown about these chemicals. This
review will discuss what is currently known about the mechanisms of obesogens, including expression of
the PPARs, hormone interference, and inflammation. Strategies for identifying obesogenic chemicals and
their mechanisms through chemical characteristics and model systems will also be discussed. Ultimately,
research should focus on improving models to discern precise mechanisms of obesogenic action and to test
therapeutics targeting these mechanisms.
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Background
The economic impact of obesity worldwide is esti-
mated to be 2.8% of the global gross domestic prod-
uct [1]. While an imbalance in energy intake and
expenditure is largely to blame, other factors contrib-
ute to this high economic burden. An analysis of
obesity trends (the National Health and Nutrition
Examination Study) found that from 1988 to 2006 for
the same caloric intake and physical activity, the aver-
age BMI was higher [2]. Grun and Blumberg in 2006
[3] hypothesized that this increase in average BMI
may be related to obesogens, a subset of endocrine
disrupting chemicals (EDCs) that alter metabolism to
favor lipid storage, leading to a predisposition to
obesity. These chemicals can be found in pesticides,
cleaning products, and food and beverage packaging

[4]. Regular exposure to these contaminants can have
long-term effects on adipose tissue, metabolic activity,
hormones, and ultimately weight. Additionally, pre-
natal exposure may put people at risk for becoming
obese later in life. As obesity care is a billion-dollar
industry worldwide, identifying and understanding
these obesogens is a crucial step in reforming world-
wide health.
This review discusses possible mechanisms of obeso-

genic action including regulation of the PPAR genes,
hormone interference, and inflammation. Insights into
mechanisms of obesogens will allow for specific thera-
peutic targeting to minimize effects and aid in predicting
potential obesogens from environmental contaminants.
This review also discusses advantages and disadvantages
of current model systems that are being used (both
in vitro and in vivo as well as epidemiological studies) to
study obesogens.
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Main text
Chemical characteristics of obesogens
Obesogens work through a diverse set of mechanisms
[5]. They have been known to mimic or partially mimic
natural hormones, having undesired biological effects
[6]. They can bind to receptors in the cell membrane,
cytosol, or the nucleus affecting cellular responses, pep-
tide hormones, or gene expression directly [6]. Their
ability to do this depends on having chemical character-
istics that resemble natural hormones including lipophi-
licity and small molecular weight (Fig. 1). Three key
properties that may influence the ability of obesogens to
act as xenohormones are the partition constant, half-life,
and molecular weight. The partition constant is an equi-
librium constant that measures how a compound dis-
tributes between two immiscible solvents. The octanol:
water partition coefficient (Kow) is the ratio of a com-
pound’s partition (divide) between organic matter and
water [7]. The equation for KOW is defined as: concen-
tration of chemical in octanol phase / concentration of
chemical in aqueous phase [7]. The equation gives a
measure of how a chemical will split between tissue and
serum at equilibrium. As lipids are organic matter, it is
thus an accepted measure of the lipophilicity of the
compound. A higher KOW indicates a more lipophilic
substance and a propensity to accumulate in adipose tis-
sue [6, 7]. The biological half-life of a chemical is the
time it takes for half of the amount of the chemical to
be broken down or removed from the body. A longer
biological half-life indicates longer persistence in the
body. This is particularly relevant to obesogens as a lon-
ger biological half-life can mean even a brief exposure
can have long-term effects [8]. Molecular weight is a

measure of the size of the compound. This is important,
since smaller molecules can diffuse into adipocytes more
easily. Additionally, even high molecular weight chemi-
cals can be broken down into low molecular weight me-
tabolites in the body that can have obesogenic effects
[7]. These three properties tend to have a profound ef-
fect on accumulation in the body and affinity for recep-
tors [7, 9]. Lipophilic substances with low molecular
weights cross cell membranes easily [6]. Those with long
biological half-lives can reside in adipose tissue for
months to years. Many well-studied obesogens fit these
criteria. A short list of established obesogens and their
molecular characteristics are given in Table 1. Lipophilic
compounds are also more resistant to degradation, lead-
ing to many of them having a biphasic half-life such as
2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) (Table 1)
[6]. Substances that are biphasic have an elimination
curve that is steep that describes the initial distribution
of the drug in the body, followed by shallow curve that
describes the final removal of drug, which is dependent
on the release of the drug from tissue compartments
such as adipose tissue into the blood [20]. Obesogens also
have a strong affinity for receptors in the body, specifically
nuclear receptors. This could be attributed to the lipophilic
nature of the compounds that resemble steroid substances
found heavily in adipose tissue [21]. However, more studies
need to be done to find other physiochemical properties
that control EDCs ability to utilize these receptors.

Mechanisms of action of obesogens
Definitive mechanisms for obesogens are still in the early
stages of investigation. Current research points to a
major role of peroxisome proliferator-activated receptor

Fig. 1 Obesogens have characteristics that make them well-suited to enter cells including small molecular weight (a) and lipophilicity (b). These
properties allow obesogens to easily pass through cell membranes to influence cellular responses and gene expression
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gamma (PPARγ), hormone interference, and inflammation
in obesogenic outcomes (Fig. 2). While the role of these
three mechanisms in obesogenic effects will be discussed
in the following section, it should be noted that many po-
tential mechanisms for obesogens exist, not all of which
will be discussed here. It should also be noted that there
are likely distinct pathways for developmental (in utero)
and non-developmental exposures of obesogens, as well as
persistent versus non-persistent exposures, with more re-
search required to clearly define these differences. For

more comprehensive reviews on what is currently known
about mechanisms of obesogens see [22–24].

Activation of peroxisome proliferator-activated receptor
gamma (PPARγ)
Peroxisome proliferator activated receptors (PPARs) are
a group of non-steroid nuclear hormone receptors [25,
26]. There are three known isoforms of PPAR: (1)
PPARα; (2) PPARβ/δ; and (3) PPARγ. Each isoform is
encoded by a separate gene [26, 27]. PPARs bind with

Table 1 Sample list of a subset of well-established obesogens with their partitioning coefficients, half-life, and molecular weight (g/mol).
The octanol/water partitioning coefficient is measured using the log Kow value, which indicates the partitioning of a chemical between
octanol and water. In these experiments, octanol is used to mimic fat and other hydrophobic components in biological systems. A
partitioning coefficient level greater than 1 indicates low solubility in water

Obesogen Source Obesogensa Chemical Characteristics*

Partitioning (Log Kow)
b Half-life (hours)c Size (g/mol)

Industrial Chemicals Bisphenol A (BPA) 3.32 5.3d [10, 11] 228.291

Bisphenol A diglycidyl ether (BADGE) ~ 3.84 120e [12] 340.419

Bisphenol S (BPS) ~ 1.65 6.93 [13] 250.268

Firemaster 550 (FM550) 8.80–11.95f Unknown [14] 549.923

2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47) 6.81 ± 0.08 [15] 664 daysg 485.795

3,3′,4,4′-Tetrachlorobiphenyl (PCB-77) 6.72 152–186 [16] 291.980

Mono-(2-ethylhexyl) phthalate (MEHP) 4.92h 4.4–6.6i 278.348

bis(2-ethylhexyl) phthalate (DEHP) 7.60 5j 390.564

Biocides Dichlorodiphenyl-trichloroethane (DDT) 6.91 10.6k 354.476

Tributyltin (TBT) 3.90–4.90 [17] 23–30 days [18] 290.058

Triphenyltin (TPT) 4.19l 3 days 385.478

Pharmaceuticals Diethylstilbestrol (DES) 5.07 2–3 days [19] 268.350

Estradiol (Estrogen steroid Hormone) 4.01 3 days 272.388

Pollutant Dioxin 6.80 5–8 years 321.970

Smoking Nicotine 1.17 1–4m 162.236

Sources
*Values of partition coefficients and half-lives might differ from those in this table because of variations in the study such as the location the study was
conducted, type of tissue, biphasic pattern, initial dosage, temperature, salinity and pH.
aThe obesogens discussed are well-established obesogens that have been used in various studies.
bAll values of log Kow were reported at 25°C and at a pH of 7 unless stated otherwise.
cAll estimated half-life values reported were conducted on studies in human based models unless stated otherwise.
dBPA data are not consistent with the current consensus that BPA exposures are both rapidly cleared and almost entirely related to food intake. Instead, it
appears plausible that there is substantial nonfood exposure, accumulation in body compartments with long elimination times, or both [3].
eBisphenol A diglycidyl ether based on Hydrolysis in Water.
f2-ethyl-1-hexyl-2,3,4,5-tetrabromobenzoate (TBB) and bis (2-ethylhexyl) tetrabromophthalate (TBPH) are the two major additive Brominated flame retardants
(BFRs) in Firemaster 550. [16].
gTetrabromodiphenyl ether (BDE-47) has two phases of elimination. The first phase of elimination is where the majority of the BDE-47 is eliminated from the body
(67%), and the remaining BDE-47 is eliminated during the terminal phase. Additionally, elimination, both whole-body and from individual tissues, is biphasic due
to varying initial and terminal phase lengths in different tissues. Since BDE-47 is highly lipophilic its terminal phase was primarily dictated by adipose tissue and
skin [21].
hMEHP was estimated from n-octanol: water coefficient (Kow) by the algorithm from Poulin and Krishnan (1993). A log Kow of 4.92 was estimated based on the
chemical structure for nonionized MEHP.
iSingle administration of MEHP in a rat (0.4 g/kg) resulted in plasma concentrations of 84.1 +/− 14.9 micrograms/ml 3 h after dosing; the half-life of MEHP was 5.5
+/− 1.1 h. [22].
jAfter an absorption and distribution phase of 4 to 8 h, half-life times of excretion in the first elimination phase were approximately 2 h; Half-life times in the
second phase—beginning 14 to 18 h post dose—were 5 h for MEHP [23].
kFemale rats were dosed orally with (14) C-ring-labeled p,p’-DDT during pregnancy or lactation. Average half-life was 10.6 h in tissues and in the fetus.
lTriphentylin Chloride was used to find the log Kow.
mNicotine’s half-life in the initial phase is reportedly about 2–3 min and the half-life in the terminal phase averages about 2 h.
Note: All partitioning coefficient values > 1 indicate lipophilic properties (bold). Half-life with strong indication of biphasic pattern (bold). Non-asterisk and cited
chemical characteristics were obtained from the U.S. National Library of Medicine Open Chemistry Database and the International Programme on Chemical Safety.
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the nuclear receptor 9-cis retinoic acid receptor (RXR)
to form their own heterodimers. These heterodimers
modulate expression of target genes [28–31]. The het-
erodimer binds to specific response sites called peroxi-
some proliferator response elements (PPRE) in the
promoter region of target genes. Subsequent binding of
a ligand to the receptor then alters the conformation of
PPAR to induce recruitment of co-transcription factors.
This results in an increase in mRNA expression of the
target gene [28, 29, 31, 32]. PPARs target genes related
to lipid storage, transport, and metabolism including
fibroblast growth factor 1 (FGF1) (PPARγ) [33], G-
protein-coupled receptor 81 (GPR81) (PPARγ) [34], adi-
ponectin (PPARα), [35], and CPT-1 (PPARα) [36, 37]
and so are common targets in the study of obesogenic
mechanisms [28, 29, 31].
PPARγ is the most widely studied transcription factor

in terms of adipose tissue development and is required
for adipogenesis [38–40]. Thiazolidinedione drugs used
to treat type 2 diabetes target PPARγ to increase insulin
sensitivity with the side effect of inducing adipogenesis
[41]. Many obesogens have already been shown to up-
regulate this gene. Tributyltin (TBT), one of the most
widely studied obesogens, activates the PPARγ/RXR

heterodimer in vitro [42, 43], in utero [44], and in vivo
[43]. It is unclear if the effects are due to the activation
of the PPARγ domain itself, the RXR domain, or both. It
is likely that TBT activates the PPARγ/RXR complex
through binding of the RXR domain since transfected
Cos7 cells were activated by TBT in the presence of a
PPARγ antagonist [42]. Additionally, commitment of
mesenchymal stem cells to the adipogenic lineage has
been shown to be dependent on RXR activation and not
PPARγ activation [45]. However, further analysis needs
to be done to affirm this conclusion. Other obesogens
that have also been shown to act at least partially
through PPARγ/RXR activation include bisphenol A
(BPA, plastic monomer) [46–48], triflumizole (fungicide)
[49], phthalate monoesters (plasticizers) [50], Firemaster
550 (flame retardant) [51], and dioctyl sodium sulfosuc-
cinate (DOSS) (component of oil dispersant COREXIT)
[52]. It is likely that different obesogens have different
mechanisms for activating the PPARγ/RXR heterodimer
and further research will be needed to determine specific
molecular mechanisms. Understanding the specific ef-
fects of these obesogens on the PPARγ/RXR heterodi-
mer may provide valuable insight for reversing
obesogenic effects.

Fig. 2 Obesogens can interfere with endocrine function by direct hormone interference or activation of peroxisome proliferator-activated
receptor gamma (PPARγ) in adipocytes. Obesogens can also alter appetite and satiety through neuroendocrine mechanisms
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PPARα is another isoform of PPAR. It is found pri-
marily in the liver, skeletal muscle, heart, and brown adi-
pose tissue and plays a major role in fatty acid
metabolism in the liver [53–55]. Natural ligands include
oxidized phospholipids, lipoprotein lipolytic proteins,
and fatty acids, among other natural ligands [54]. Al-
though it is found primarily in liver and skeletal muscle,
there is increasing evidence for its role in adipose tissue
and as a target for obesogens. PPARα is known to im-
prove insulin sensitivity and aid in body weight control
in rodents [53, 54]. Agonists have also been shown to re-
duce insulin resistance and decrease body weight in male
mice [53]. PPARα-deficient mice have been shown to
have upregulated mRNA expression of adiponectin, but
this is thought to be the result of increased adipose tis-
sue mass or an attempt to counterbalance a concomitant
increase in leptin expression [56]. PPARα is not as
widely studied as PPARγ in terms of obesogens but
current literature suggests there is an effect. Monoso-
dium glutamate (MSG) and aspartame decreased gene
expression of PPARα in mice [57]. TBT was shown to
activate PPARα in transfected HeLa cells [58] and mice
exposed to TBT in utero showed increased mRNA ex-
pression of PPARα [59]. Since PPARα is known to im-
prove insulin sensitivity, the increased expression could
be one of the mechanisms for obesogenic effects. How-
ever, the obesogen bis (2-ethylhexyl) phthalate (DEHP)
increased mRNA expression of PPARα in liver tissue
while decreasing expression in visceral fat in mice [60].
The mechanisms of obesogens are likely more complex
than what is currently understood and further research
will be required to draw conclusions.

Hormone interference
Exogenous chemicals that are capable of mimicking or
interfering with hormonal action can have profound ef-
fects on the overall function of metabolic processes.
Hormones such as androgens and estrogens are tightly
regulated and play an important role in the function of
adipose tissue. Increasing androgen levels are associated
with lower BMIs in men [61]. Several phthalates are sus-
pected antiandrogens [62] and have shown obesogenic
effects in humans. BPA acts as a xenoestrogen. When
mice are exposed perinatally to BPA, the offspring are
significantly heavier [48]. Dichlorodiphenyldichloroethy-
lene (DDE, a metabolite of the common pesticide
dichlorodiphenyl-trichloroethane, DDT) has also been
shown to exhibit estrogenic responses [63]. It leads to
rapid weight gain in infants after prenatal exposure.
BPA, phthalates and polybrominated diphenyl ethers
(PBDEs) also have been shown to reduce circulating thy-
roid levels [64], a key regulator of basal metabolism. De-
creased thyroid hormone levels result in an increased
BMI [65]. Leptin and adiponectin are also influenced by

obesogens. Leptin, discovered by Zhang et al., is respon-
sible for satiety and increases glucose uptake by skeletal
muscle and brown adipose tissue [66, 67]. Mutations in
leptin result in obesity and hyperinsulinemia. However,
hyperleptinemia, as is common in obesity, can lead to
leptin resistance [66, 68]. Adiponectin, first discovered
by Scherer et al., is known to increase insulin sensitivity
[69, 70]. Multiple obesogens have been shown to have
an effect on these hormones. TBT increases plasma lep-
tin levels in mice, causing an overexpression of the lep-
tin gene, and decreased serum adiponectin levels [71,
72]. DEHP decreases both adiponectin and leptin mRNA
levels in mice [60]. DOSS increases plasma leptin levels
in male mice exposed in utero [73]. Genistein, an isofla-
vone found in soy, induced adipose deposition in male
mice, increased insulin resistance, and upregulated
mRNA expression of leptin [74]. DEHP has also been
shown to increase serum leptin levels [75]. Benzyl butyl
phthalate (BBP, plasticizer) was shown to increase adipo-
nectin protein expression in differentiated 3T3-L1 cells
[76]. Additionally, glucocorticoid receptor signaling is
crucial for adipocyte differentiation [77]. Sargis et al.
[78] demonstrated increased adipogenic differentiation
via glucocorticoid receptor activation with BPA, dicyclo-
hexyl phthalate (DCHP), endrin, and tolylfluanid (TF).
Hormones are a common target of obesogens but the
exact effect of each obesogen and the mechanisms of
hormone influence are yet to be determined. Moreover,
there are likely other hormonal targets that are still
unidentified.

Inflammation
Obesity is associated with chronic inflammation. While
inflammation is associated with adipose tissue expansion,
it may also be the result of epigenetic changes due to en-
vironmental and lifestyle factors [79]. DOSS has been
shown to increase body mass, visceral fat mass, upregu-
late inflammatory gene expression (Cox2, Nox4), and in-
crease plasma levels of IL-6 in male mice exposed in
utero [73]. Likewise, TBT exposure in rats upregulated
PPARγ, increased ovarian fat mass, and increased repro-
ductive tract inflammation in rats [80]. A similar study
in female rats showed increased body weight and uterine
inflammation after TBT exposure [81]. Male mice ex-
posed to BPA showed increased gene expression of IL-6,
TNF-α, and IL-1β in white adipose tissue and increased
fat mass on a chow-diet [82]. Differentiated 3T3-L1 pre-
adipocytes also show increased expression of IL-6, TNF-
α, MCP-1, and CXCL1 after exposure to either TBT,
BPA, or mono-ethylhexyl phthalate (MEHP, metabolite
of DEHP) [83]. Moreover, a study on male mice showed
an Il-17 antibody was able to reduce inflammation and
counter the obesogenic effects of BPA, suggesting in-
flammation plays a major role in the obesogenic effects
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of BPA [84]. Multiple obesogens have also been shown
to increase the presence of immune cells in adipose tis-
sue. Female sheep exposed to BPA show increased
mRNA expression of CD68, a marker of macrophage in-
filtration [85]. Additionally, mice exposed to BPA peri-
natally showed increased presence of macrophages in
gonadal white adipose tissue [86]. BPA has also been
shown to increase macrophage self-renewal [87]. BPA is
one of the most widely studied obesogens but it is likely
that an influx of inflammatory cells plays a role in other
obesogens as well. There is also evidence for a correl-
ation between the PPAR genes and inflammation. While
they are upregulated during inflammation they also act
as negative feedback loops by being antagonists to tran-
scription factors for proinflammatory genes [88–92]. An-
tidiabetic drugs, such as thiazolidinediones antagonize
tumor necrosis factor-α (TNF-α) [93] and act as agonists
for PPARγ [94]. This area is in early stages of research
but suggests a role for inflammatory cells and gene ex-
pression in obesogenic modes of action.

Model systems
Currently, model systems are used to test mechanisms
of obesogenic action including in vitro and in vivo sys-
tems as well as epidemiological studies. Each type poses
unique benefits and drawbacks to establishing mecha-
nisms. Common systems for each type are discussed
below along with advantages and disadvantages.

In vitro models
In vitro models pose several benefits over other model
systems. They can utilize human cell types to be more
physiologically relevant. They are also generally simpler,
faster, can be done in parallel (for medium to high
throughput analyses), and are more cost-effective, mak-
ing them a good screening mechanism for obesogens
prior to in vivo studies. Currently, there are several
in vitro models to screen potential obesogens that exam-
ine characteristics such as adipocyte maturation and
lipid accumulation (Table 2). The vast majority of these
models utilize mouse 3T3-L1 preadipocytes. These cul-
tures have been integral in elucidating certain molecular
mechanisms of adipogenesis. However, it is still unclear
if the 3T3-L1 cell line is adequate for evaluating adipo-
genic responses, since they are fully committed to the
adipocyte lineage [120, 121]. Additionally, the murine-
derived 3T3-L1 cell line maintains species specificity,
which may hinder application of results for human-
based risk assessments. Use of human primary cell lines
mitigates this risk but further limitations exist. Patient
demographics and medical histories are unknown to re-
searchers and contribute large variability in outcomes
[122]. Sex specific differences are often not accounted
for and gender is known to dictate body fat storage

[123] and responses to obesogens [48]. Future work
needs to work on validating these models using primary
cells or tissues from a wide range of known patient
demographics. There are also depot-specific effects of
obesogens on adipose tissue. Cells derived from visceral
versus subcutaneous or brown versus white adipose tis-
sue may have varying responses to obesogens. As vis-
ceral adipose tissue is most closely linked to metabolic
disease, understanding differential responses by adipose
tissue depots is crucial for defining obesogenic effects.
To better understand the impact of obesogenic che-

micals in more physiologically relevant environments,
scientists have been examining 3D human tissue sys-
tems to model the effects of obesogens in vitro
(Table 2). 3D adipose tissue systems recapitulate the
in vivo adipose tissue microenvironment, can be ex-
tended for long term culture [122, 124] (months, to
study chronic effects of obesogens) and can incorpor-
ate multiple cell types. They can be used to study the
sequestration of obesogens in adipose tissue as well
as cell migration. Obesogens are primarily lipophilic
and thus prone to retention by adipose tissue [125].
3D models can incorporate mature adipocytes which
are non-adherent and cannot be cultured using stand-
ard 2D culture techniques. Similarly, they allow for
long-term in vitro study of ASC differentiation which
also become non-adherent over time [126]. The use
of 3D models allows for more sophisticated co-
culture systems. As multiple organs play a role in
obesogenic actions including adipose tissue, pancreas,
liver, thyroid, etc., systems integrating multiple cell
types may provide more physiologically accurate data.
They can also study paracrine signaling. However, 3D
models increase cost and complexity over 2D systems,
since they use natural or artificial extracellular matri-
ces (ECM). This brings the added variables of cell
binding domains, mechanical properties, pore size,
etc. Perfusion cultures also pose issues related to flow
rates, media, and fluid/cell ratios. Finally, most
in vitro studies are currently 2D which limits the abil-
ity to compare results from 3D cultures to already-
established models. Overall, both 2D and 3D in vitro
models provide precise control of cellular interactions
and boundary conditions, permitting quantitative ana-
lyses of mechanisms. They are ideally suited for high-
throughput screening as they can test dose responses
and mixture effects in parallel. While in vitro models
have limitations that must be resolved, they provide
strong screening potential for obesogens.

In vivo models
Animal models have the distinct and obvious disadvan-
tage of not accurately replicating human physiology.
However, animal models are an important and widely
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Table 2 2D and 3D in vitro models for studying obesogens. Note: -- under Matrix indicates a 2D cell culture study

Matrix Cell Type Obesogen Source

– 3T3-L1 (murine preadipocyes) Tributyltin (TBT) [42, 43,
94–99]

Bisphenol A (BPA) [97–99]

Bisphenol S (BPS) [102]

Bisphenol A diglycidyl ether
(BADGE)

[100]

Triphenyltin [95]

Dioctyl sodium sulfosuccinate
(DOSS)

[52]

Geneistein & naringenin [103]

Phthalate monoesters [32]

4-nonylphenol (NP) [101]

Mono-ethylhexyl phthalate (MEHP) [50]

Flavanone [104]

Bixin, norbixin [105]

Emodin [106]

C2C12 (murine) Mono-ethylhexyl phthalate (MEHP) [50]

HELA (human) Mono-ethylhexyl phthalate (MEHP) [50]

Human embryonic kidney cells (HEK293C) Dioctyl sodium sulfosuccinate
(DOSS)

[52]

HepG2 (human liver carcinoma cells) Bisphenol A (BPA), Bisphenol S
(BPS)

[102]

Human adipose-derived stem cells (hASCs) Bisphenol A (BPA), Bisphenol A
diglycidyl ether (BADGE)

[102]

Tributyltin (TBT) [44]

Murine adipose derived stem cells (mASCs) Bisphenol A (BPA), Bisphenol A
diglycidyl ether (BADGE)

[102]

Tributyltin (TBT) [44]

Fao (murine hepatoma cells) Phthalate monoesters [32]

COS (monkey kidney-derived cells) Bisphenol A (BPA), Bisphenol A
diglycidyl ether (BADGE)

[102]

MBzP, MBuP [50]

Mono-ethylhexyl phthalate (MEHP) [50, 107]

THP-1 macrophages (human) Psi-baptigenin, hesperidin [108]

TARM-Luc (human, transfected T47-D epithelial cells) Monosodium glutamate (MSG) [109]

KS483 (murine calvaria) Soy phytoestrogen genistein [110]

C57BL/6 (murine–derived bone marrow stromal cells) Firemaster 550 [51]

collagen embedded silk scaffolds Human embryonic-derived stem cells (hESCs) Tributyltin (TBT), Bisphenol A (BPA),
Bisphenol S (BPS)

[111]

silk scaffolds Human adipose-derived stem cells (hASCs), Human umbil-
ical vein endothelial cells (HUVECs)

– [112]

silk fibroin matrices Human adipose-derived stem cells (hASCs) – [113]

collagen type 1 OP9 (murine mesenchymal stromal pluripotent cells),
HaCaT (human keratinocytes)

Super Hatomugi (SPH) [114]

bacterial nanocellulose Murine mesenchymal stem cells (mMSCs) – [115]

fibrous polyethylene teraphthalate
scaffolds

3T3-L1 (murine preadipocyes) – [116]

low-shear rotary bioreactor Murine adipose-derived stem cells (mASCs) – [117]
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used tool for the study of obesogens because they are
suited for studying whole body kinetics and systemic ef-
fects not possible in vitro. Metabolism and weight is reg-
ulated by complex interconnected pathways involving
multiple organs including adipose tissue, liver, pancreas,
muscle, brain, etc. [127]. Although in vitro cell culture
techniques can use human cell lines, recapitulating the
inter-dependency of these systems remains difficult.
Long-term in vitro culture remains a challenge and
multi-organ models pose unique problems such as scal-
ing ratios, common mediums, and organ-specific ECMs.
Thus, although more sophisticated in vitro models are
being heavily researched, animal models still play an im-
portant role in identifying obesogens and understanding
obesogenic mechanisms because they allow for the study
of organ cross-talk and systemic effects. This is particu-
larly relevant in understanding the role of chronic in-
flammation and hormone interference.
Rodents are the most commonly used animal model

for studying obesogens. Multiple obesogens have been
identified using murine models including: TBT [43],
BPA [82], triphenyltin [43, 95], DEHP [128], DES [129],
MEHP [130], polycyclic aromatic hydrocarbons [131,
132], DDT [133], and nicotine [134]. Mice are biologic-
ally and anatomically similar to humans and contract
many of the same diseases [135]. This is particularly use-
ful for diseases with an inflammatory component, such
as obesity [136], as animal models can mimic complex
inflammatory responses. Mice can also be genetically
manipulated, inbred to yield genetically identical strains,
can be grown under controlled conditions (i.e high-fat/
western diet), and have an accelerated lifespan (minimiz-
ing the time required to do studies). Other common
in vivo systems used to evaluate obesogens include: rats,
[137–139] zebrafish, [140–142] and the Xenopus laevi
[143]. Use of in vivo models to study endocrine disrup-
tion has provided many insights into potential obesogens
and different modes of action. However, it is important
to keep in mind the drawbacks of using animal models.
As discussed, they do not necessarily recapitulate human
physiology [144]. Moreover, the dose-response may not
translate directly to humans. The window of exposure
may also be unnatural. Mice exposed to a specified level
of one particular chemical over the course of weeks may
not represent chronic fluctuating exposure to multiple
chemicals over the course of years in humans. Animal
models play an important role in identifying obesogens

and discerning mechanisms of action but should be
combined with information from in vitro studies and
epidemiological studies to draw the most accurate
conclusions.

Epidemiological studies
Epidemiological studies are extremely important for cor-
relating disease outcomes to concentrations of obeso-
gens in humans. However, human studies linking EDCs
and obesity are limited, inconsistent, and lack data to
support the growing animal literature (for review see
Hatch et al., 2010 [145]). Current studies are often
cross-sectional and exploratory.
Since a significant amount of evidence suggests that

prenatal exposures predispose patients towards obesity,
measurements of obesogens during pregnancy is a large
focus for epidemiological studies. A study revealed that
increasing maternal urinary phthalate concentrations
during pregnancy doubled the likelihood of the offspring
being overweight or obese [146]. Likewise, cohort studies
on the effects of prenatal exposures to BPA showed an
association with an increased waist circumference, BMI,
and risk of being obese [147]. Future work is necessary
to compare results from developmental exposures to ex-
posures later in life. Perspective long term studies are
also necessary to track patients over time.
Some epidemiological studies examine single-spot

urine or 24-h urine samples in order to assess exposure
over a day [148]. This method allows investigators to
directly measure individual chemical concentrations in a
variety of biospecimens [149]. However, it is not possible
to determine whether exposures were acute or long
term. Although chemical exposure biomarkers have been
advantageous in studying a variety of individual biospeci-
mens, short half-lives in certain obesogens (such as BPA
that persists as BPA-G) and reverse causality due to
pharmacokinetic variables have limited their usefulness
[150]. Additionally, given the lipophilic nature of obeso-
gens, it is unlikely that urine samples are an accurate
reading of exposure. Ideally, adipose tissue would be
sampled directly.
Another important consideration brought up by

Sharpe and Drake [151], is the influence of confounding
factors in epidemiological studies. They warn that obeso-
genic exposures may not have a causal relationship with
obesity, since a Western style diet increases exposure to
these compounds, and thus the observed increase in

Table 2 2D and 3D in vitro models for studying obesogens. Note: -- under Matrix indicates a 2D cell culture study (Continued)

Matrix Cell Type Obesogen Source

polyglycolic acid fiber meshes 3T3-L1 (murine preadipocyes) – [118]

adipospheres created via magnetic
nanoparticle levitation system

3T3-L1 (murine preadipocyes) – [119]
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levels would be reflective of greater food consumption.
Another confounding factor is that many epidemio-
logical studies are designed to assess the impact of a sin-
gle chemical without accounting for the effects of
mixtures [148]. Statistical models must be developed in
order to elucidate the health outcomes associated with
specific chemicals in the mixtures. These studies should
account for the fact that some of these chemicals may
operate by the same mechanism, while interfering with
other mechanisms.

Conclusion
Abundant evidence supports the role of exogenous che-
micals in rising obesity rates through regulation of gene
expression (such as the PPARs), hormone changes, and
inflammation. A greater understanding of obesogenic
mechanisms will lead to better prophylactic and thera-
peutic strategies and identify other potential obesogens.
In vitro models are useful screening tools for identifying
and testing mechanisms of obesogens. Specifically, they
can help discern changes to gene expression or molecu-
lar pathways that induce changes to adipocyte
phenotype. Improvements to these models will also im-
prove in vitro to in vivo extrapolation to humans. Still,
animal models remain a useful and generally physiolo-
gically accurate tool for testing inter-organ obesogenic
mechanisms including hormone interference and inflam-
mation. To validate in vitro and in vivo animal models,
more comparisons should be made to epidemiological
studies. Epidemiological studies provide unparalleled
insight into human obesogen exposures and effects.
They can be used to identify exposure levels of potential
obesogens and to analyze correlative effects between ex-
posure level and BMI, adiposity, leptin/adiponectin
levels, etc. This can help determine if there are safe
levels of exposure to specific levels or whether drastic
actions should be taken to remove a compound entirely.
Integrating the information obtained from all three of
these model systems will lead to better-informed choices
of compounds that can be used in food processing, pack-
aging, etc. to replace obesogens. Ultimately, this will de-
crease the economic burden of obesity.
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