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Abstract
Background: Since nuclei segmentation in histopathology images can provide key information for identifying the
presence or stage of a disease, the images need to be assessed carefully. However, color variation in histopathology
images, and various structures of nuclei are two major obstacles in accurately segmenting and analyzing
histopathology images. Several machine learning methods heavily rely on hand-crafted features which have
limitations due to manual thresholding.
Results: To obtain robust results, deep learning based methods have been proposed. Deep convolutional neural
networks (DCNN) used for automatically extracting features from raw image data have been proven to achieve great
performance. Inspired by such achievements, we propose a nuclei segmentation method based on DCNNs. To
normalize the color of histopathology images, we use a deep convolutional Gaussian mixture color normalization
model which is able to cluster pixels while considering the structures of nuclei. To segment nuclei, we use Mask
R-CNN which achieves state-of-the-art object segmentation performance in the field of computer vision. In addition,
we perform multiple inference as a post-processing step to boost segmentation performance. We evaluate our
segmentation method on two different datasets. The first dataset consists of histopathology images of various organ
while the other consists histopathology images of the same organ. Performance of our segmentation method is
measured in various experimental setups at the object-level and the pixel-level. In addition, we compare the
performance of our method with that of existing state-of-the-art methods. The experimental results show that our
nuclei segmentation method outperforms the existing methods.
Conclusions: We propose a nuclei segmentation method based on DCNNs for histopathology images. The
proposed method which uses Mask R-CNN with color normalization and multiple inference post-processing provides
robust nuclei segmentation results. Our method also can facilitate downstream nuclei morphological analyses as it
provides high-quality features extracted from histopathology images.
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Background
Histopathology images are carefully and frequently asses-
sed by pathologists to identify the presence and stage
of a disease. However, conventional methods that rely
on human assessment have limitations. First, when cap-
turing and examining subtle visual features in com-
plex histopathology images, the observations of human
pathologists can vary for every examination. This can
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cause pathologists to disagree with each other even when
assessing the same image.
In addition, as the number of pathologists decreases

while the number of biopsy tests continues to increase,
the workload of pathologists has been growing [1]. These
problems can be alleviated by adopting deep learning and
computer vision techniques. They can be used for improv-
ing accuracy, predicting the same results, and reducing the
assessment time.
Conventional histopathology assessment is starting to

leverage the power of deep learning to enhance diag-
nostic precision and is rapidly shifting towards computa-
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tional histopathology. Computational histopathology can
be used for segmenting regions of interest, counting nor-
mal or cancer cells, recognizing tissue structures, classi-
fying cancers, grading cancers, predicting the prognosis
of cancer patients, and so on. Among these computa-
tional histopathology applications, we focus on nuclei
segmentation in histopathology images.
Nuclei segmentation in histopathology images is chal-

lenging even for human pathologists for two main rea-
sons. The first reason is the color variation in histopathol-
ogy images. The H&E stain is one of the main stains
used in histopathology. Hematoxylin stains nuclei while
eosin stains other tissue structures; the background is not
stained. However, staining protocols adopted by patholo-
gists and the intensity of the stain can vary due to individ-
ual preferences or various organ types. Second, the differ-
ences in morphological structure can also be an obstacle
in segmenting nuclei in histopathology images. As cells
in different organs tend to have different morphological
structures, the differences in the shape of individual cells
should also be considered.
Several methods have been proposed to segment nuclei

in histopathology images including the method by Otsu
[2], the watershed method [3], K-mean clustering [4],
Grab Cut [5], and so on. Furthermore, filtering based
methods have been proposed to utilize the features of
nuclei [6–8]. However, all of the above methods have the
same major weaknesses. They are all extremely sensitive
to parameter settings and are effective for only one or
a few specific types of morphological nuclei structures.
Since stains and morphological structures of nuclei can
vary significantly, it is difficult to develop a generalized
solution that can be applied to all histopathology images.
In recent years, machine learning based segmentation

methods have been widely used due to their high per-
formance. During the learning process, machine learning
models have to be trained on the features of nuclei. There-
fore, the features of nuclei need to be manually crafted
and extracted. For example, features such as shape, color
variance, color texture, blue ratio, color histograms, Lapla-
cian of Gaussian response, geometric gradients, and other
diverse features are extracted from histopathology images.
Finally, these hand-crafted features are used for machine
learning based methods to classify and distinguish nuclei
from the background [9–12]. However, these methods
are limited by their tedious and time consuming feature
engineering.
Deep learning models that automatically extract fea-

tures from raw data can alleviate these problems. More-
over, as deep learning models are robust due to their
reliable performance in computer vision tasks such as
object classification, detection, and segmentation, they are
also shifting the paradigm of nuclei segmentation [13–17].
Xing et al. proposed a nucleus segmentation method that

uses an iterative region merging algorithm and a deep
learning model to initialize contours. Their nucleus seg-
mentation method performs bottom-up shape deforma-
tion and top-down shape inference, and achieves good
results [13].
Several studies have used a fully convolutional neural

network (FCN) [18], which is a popular convolutional
neural network (CNN) architecture, for object segmenta-
tion tasks. FCN is a CNN in which fully connected layers
are replaced with convolutional layers. FCNs achieve high
performance in various segmentation tasks in the com-
puter vision field and nuclei segmentation [19, 20].
In addition, U-Net [21], which is based on FCN, has a

sophisticated architecture with skip connections, and is
used to segment nuclei in histopathology images. Cui et
al. normalized colors of input images and trained a U-Net
for segmentation [22]. Ronneberger et al. proposed a CNN
based segmentation method, in which an FCN is used to
produce three-class segmentation results (inside of nuclei,
outside of nuclei, and boundary of nuclei) [21].
In the computer vision domain, state-of-the-art seg-

mentation performance has been achieved by Mask R-
CNN. Due to its outstanding object segmentation perfor-
mance, Mask R-CNN has also been used for nuclei seg-
mentation in microscopy images and achieved encourag-
ing results [23]. However, there is still room for improve-
ment in histopathology image segmentation. Thus, we
apply Mask R-CNN as well as color normalization and
multiple inference to segment nuclei in H&E stained
histopathology images.
The main contributions of our study are listed below.

• We apply Mask R-CNN which is a state-of-the-art
segmentation framework based on deep
convolutional neural network to perform the nuclei
segmentation task.

• We use the U-Net based deep convolutional
Gaussian mixture color normalization model
(DCGMM) to alleviate the large color variation in
histopathology images.

• We use multiple inference for post-processing to
improve the segmentation performance.

• We evaluate our nuclei segmentation method on two
datasets which consist of histopathology images of
various organs and histopathology images of the
same organ, respectively. Our method achieves
state-of-the-art performance on both datasets.

Materials andmethods
Overview
We use convolutional neural networks at various points
to flexibly deal with difficulties of the nuclei segmenta-
tion task. Figure 1 shows the flow chart of our nuclei
segmentationmethod. Ourmethod includes the following
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Fig. 1Workflow of our nuclei segmentation method

four major steps: pre-processing, color normalization,
nuclei segmentation, and post-processing. The details
of each step are provided below. The codes for our
nuclei segmentation method are available at the GitHub
repository (https://github.com/hwejin23/histopathology_
segmentation)

Pre-processing
In the general computer vision field, an extremely large
amount of data is required for training deep learning
models. An insufficient amount of data may lead to the
model overfitting the training data, which may result in
poor testing performance. However, the datasets that we
use for training and evaluation contained a very small
number of histopathology images. Therefore, we apply
several augmentation methods to increase the amount of
data. Each image in the training set is randomly cropped,
rotated (90◦, 180◦, and 270◦), horizontally flipped, and
vertically flipped. Therefore, we use training images which
are enlarged by 1400 times.

Color Normalization
Color normalization is necessary due to the color varia-
tion in histopathology images. Figure 2 shows examples of
histopathology images. As the examples show, there is a
large color variation in the histopathology images. In the
first row, the colon image seems to be over-stained while
the prostate image can be considered under-stained. The
two images in the second row are of the same organ (liver).
It can be observed that the stained images differ even
though the images are of the same organ. Moreover, the
difference in color variation is more obvious when com-
paring all the images at once. Therefore, using color nor-
malized image can improve segmentation performance.
We use the deep convolutional Gaussian mixture color
normalization model (DCGMM) [24] to reduce the color
variation in histopathology images.
Several studies have devoted their efforts to develop-

ing robust color normalization methods for H&E stained
histopathology images. Intensity thresholding [25], his-
togram normalization [26], stain separation [27], color
deconvolution [28], and combining spatial information
with color information [29] are representative normal-
ization methods. The previously proposed DCGMM

obtains state-of-the-art color normalization performance
onH&E stained histopathology images with the large stain
variations [24].
Conventional color normalization Gaussian mixture

models have limitations since they cluster pixels based
only on color attributes, without considering the spatial
information or presence of an object. AF. G. Zanjani et
al. applied a convolutional neural network (CNN) to a
conventional Gaussian mixture model (GMM) for color
normalization. DCGMM addresses limitations by fitting a
Gaussian mixture model (GMM) with exploiting a CNN
that helps capture the features of objects and their back-
ground.
The original DCGMMuses a naive CNNwhich consists

of stacked convolutional layers [24]. DCGMM calculates
the Gaussian distribution of object of each class based on
segmentation results. Therefore, we replaced a naive CNN
with a U-Net [21] which uses skip connections between
layers and is known to be highly effective in medical image

Fig. 2 Different histopathology images with large color variations.
The type of organ is indicted below each image

https://github.com/hwejin23/histopathology_segmentation
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segmentation. The U-Net architecture that we use in this
study is illustrated in Table 1.
DCGMM is trained on a pixel-color distribution of the

following tissue types: the nuclei, the surrounding tis-
sues, and the background. DCGMM is optimized using a
log-likelihood loss function and the gradient descent algo-
rithm instead of the iterative expectation-maximization
(EM) algorithm. In other words, the E-step of the EM
algorithm is replaced by a CNN. The parameters μ and

∑

of multivariate Gaussian distributions of an input image
are calculated similarly to the way they are calculated in
the M-step of the EM algorithm.
In other words, training images are given to the U-

Net based DCGMM and pixels are classified into one
of the following groups: nuclei, surrounding tissues, and
the background. The DCGMM calculates the distribu-
tion of clustered pixels. By an unsupervised method, the
DCGMM is trained for 100000 iterations. The Adam
optimizer [30] with a learning rate of 0.0001, beta1 of

0.9, beta2 of 0.999 and epsilon of 1e-0.8 are used for
optimization.
Color normalization can be performed by adjusting the

Gaussian distributions of input images using the Gaussian
distributions of a template image. The template image and
input images are inputted to the fully trained DCGMM
and the parameters of the Gaussian distributions of the
template image and input images are estimated. Then, the
DCGMMcalculates the Gaussian distribution of the input
images using the Gaussian distribution of the template
image. In our method, color normalization is applied to
all the augmented histopathology images before training
and testing Mask R-CNN, which is explained in the next
section.

Nuclei Segmentation
Mask R-CNN [31] is a state-of-the-art object segmenta-
tion framework that can identify not only the location of
any object but also its segmented mask. Mask R-CNN

Table 1 U-Net architecture used for the DCGMM in our study

Layer Details Layer Details

Input Output

↓ ↑
↓ conv9_3 1x1x32; ReLU

↓ conv9_2 3x3x64; ReLU

conv1_1 3x3x32; ReLU conv9_1 3x3x64; ReLU

conv1_2 3x3x32; ReLU → concat4 concatenate upsample4 with conv1_2

↓ ↑
pool1 2x2 max pool stride 2 ↑
↓ upsample4 2x2 upsample of conv8

conv2_1 3x3x64; ReLU conv8 3x3x32; ReLU

conv2_2 3x3x64;ReLU → concat3 concatenate upsample3 with conv2_2

↓ ↑
pool2 2x2 max pool stride 2 ↑
↓ upsample3 2x2 upsample of conv7

conv3_1 3x3x128; ReLU conv7 3x3x64; ReLU

conv3_2 1x1x128; ReLU ↑
conv3_3 1x1x128; ReLU → concat2 concatenate upsample2 with conv3_3

↓ ↑
pool3 2x2 max pool stride 2 ↑
conv4_1 3x3x256; ReLU upsample2 2x2 upsample of conv6

conv4_2 3x3x256; ReLU conv6 3x3x128; ReLU

conv4_3 1x1x256;ReLU → concat1 concatenate upsample1 with conv4_3

↓ ↑
pool4 2x2 max pool stride 2 ↑
conv5_1 3x3x256; ReLU upsample1 2x2 upsample of conv5_3

conv5_2 3x3x256; ReLU ↑
conv5_3 1x1x256; ReLU → ↑
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extends the object detection model Faster R-CNN [32] by
adding a third branch for predicting segmentation masks
to the existing branches for classification and bounding
box regression.Mask R-CNN is a two-stage framework. In
the first stage, it scans an input image and finds areas that
may contain an object using a Region Proposal Network
(RPN). It predicts the classes of proposed areas, refines the
bounding box, and generates masks for an object at the
pixel level in the next stage based on the proposed areas
from the first stage.
Mask R-CNN framework has the following compo-

nents: backbone network, region proposal network, object
classifying module, bounding box regression module, and
mask segmentation module. Figure 3 shows the over-
all architecture of Mask R-CNN. The backbone network
is a standard convolutional neural network (CNN) that
extracts features. Each input image is converted to a fea-
ture map by the backbone network and the feature map is
used as the input for the following step. The Region Pro-
posal Network (RPN) scans entire images to detect can-
didate areas that may contain objects. Instead of directly
scanning an image, the RPN scans a feature map which
is the output of the backbone network. The candidate
areas distributed in the image are called "anchor boxes"
and individually assessed. There are anchor boxes with
different sizes and aspect ratios. Some anchor boxes can
cover almost an entire image. The RPN has a confidence
score for each anchor box. The confidence score of the
anchor box indicates whether a given anchor box belongs
to the background or foreground. A high classification
score indicates that an anchor box likely contains part of
an object. Since anchor boxes might not contain the entire
object, the RPN refines the anchor boxes so that they can
better fit the object, which is known as bounding box
refinement.

For each anchor box containing an object, the object
classification module and the bounding box regression
module are applied. Unlike the RPNwhich predicts classes
that are background and foreground, the object classifica-
tion module is able to classify objects into specific classes
including the background class. It classifies a given object
into n + 1 classes where n is the number of classes and
1 denotes the background class. The mask network is the
main feature of Mask R-CNN. Although it is similar to the
bounding box refinement process in RPN, Mask R-CNN
performs a more detailed refinement of the location of the
box. Finally, Mask R-CNN takes the foreground regions
selected by the object classification module and generates
masks for them.
Although we follow the general implementation ofMask

R-CNN framework stated in the original paper [31]. For
the backbone network, we employ a feature pyramid
network (FPN) [33]. FPN consists of a bottom-up path-
way, a top-bottom pathway, and lateral connections. A
bottom-up pathway can be any convolutional network
that extracts features from raw images. A top-bottom
pathway sequentially generates same size of feature maps
that correspond to feature maps generated by the bottom-
up pathway.
Corresponding feature maps from the bottom-up path-

way are added to the feature maps of the top-bottom path-
way by the lateral connections. FPN outperforms other
single convolutional networksmostly because it maintains
semantically strong features at various resolution scales
through its bottom-up pathway, top-bottom pathway and
lateral connections. Among the various FPN architec-
tures, we employ the FPN based on the ResNet-101 archi-
tecture. The weights of RPN based on ResNet-101 are
pretrained on the ImageNet dataset. For anchors, we use
the aspect ratios of 1:1, 1:2, and 2:1, and five scales with

Fig. 3 The overall network architecture of Mask R-CNN
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box areas of 82, 162, 322, 642, and 1282. While the original
Mask R-CNN used 5 scales with box areas starting from
1282, which is suitable for the COCO dataset, we mod-
ify the anchor sizes since nuclei are much smaller than
the objects in the COCO dataset. We obtain segmenta-
tion results of Mask R-CNN on the top 1000 candidates
to detect a large number of nuclei. A stochastic gradient
descent (SGD) optimizer [30] with a learning rate of 0.001
and a learning momentum of 0.9 is used. In this study,
DCGMM and Mask R-CNN were separately trained. We
conduct all the experiments on a single machine with
the following configuration: Intel(R) Core(TM) i7-6700
3.30GHz CPU with NVIDIA GeForce GTX 1070 Ti 8GB
GPU and 48GB RAM.

Post-processing
After training Mask R-CNN on the training set, we apply
multiple inference to improve the segmentation results of
our method. We augment each histopathology image in
the test set by rotating (90◦, 180◦, and 270◦), flipping hor-
izontally, flipping vertically, and flipping horizontally and
vertically. Augmentationmethods that can change the size
of an image are not applied. A total of 7 augmented images
including the original image are generated and used as the
input for multiple inference. After comparing one nucleus
of the original image with all the nuclei of 7 augmented
images, we selected nuclei with intersection over union
(IoU) values greater than 0.2. For the segmentation results
of the nuclei, majority voting at the pixel level is per-
formed on the nuclei set we made. Pixels that have a score
higher than 50% are selected as final segmented pixels.
When we conduct inference, we use cropped images and
restore them to original shaped images.

Experiment and Results
Datasets
We evaluate the performance of our nuclei segmentation
method on two publicly available datasets. Both datasets
consist of histopathology images and their corresponding
ground-truth segmentation annotations.
The first dataset is the multiple organ H&E stained

histopathology image dataset (MOSID) [20]. It contains
a total of 30 images and the spatial size of each image is
1000×1000. Histopathology images of the following seven

organs were collected: breast, kidney, liver, prostate, blad-
der, colon, and stomach.We divide the dataset into a train-
ing set and test set as shown in Table 2. Histopathology
images of the bladder, colon, and stomach are included in
only the test set.
Since the image size of 1000×1000 is too large for train-

ing our model, we set the input image size to 500×500 for
the dataset that contains images of spatial size 1000×1000.
Histopathology images for training are randomly cropped to
the size of 500× 500 as explained in the “Pre-processing”
section and histopathology images for testing are divided
into 9 overlapping sections. In other words, each section
of a 1000 × 1000 sized histopathology image is cropped
at the points of (0, 0), (0, 500), (500, 0), (500, 500), (250,
0), (0, 250), (250, 500), (500, 250), and (250, 250). When
dividing an original image, the edges of nuclei may be
cut off. To avoid this, we use overlapping sections. The
512 × 512 input size of the other dataset is small enough
for training the model; no cropping or dividing is applied
and histopathology images are used in their original form.
After the data augmentation for training, around 1000
augmented images fromMOSID are used.
The second dataset is the breast cancer histopathology

image dataset (BNS) [19]. It consists of 33 H&E stained
histopathology images and the spatial size of each image
is 512 × 512. All the images are images of the breast. The
images are collected from 7 breast cancer patients. While
MOSID is divided into the training and test sets based on
organs, BNS is divided based on patients. After the data
augmentation for training, around 300–500 augmented
images from BNS are used.
In addition to the datasets (MOSID and BNS) used

for evaluating our nuclei segmentation method, an extra
dataset is used for training the DCGMM with the U-Net.
Among several datasets provided by the Tumor Prolifera-
tion Assessment Challenge 2016 (TUPAC)[34] organizers,
we chose the auxiliary dataset which consists of images
from three pathology centers and 73 breast cancer cases,
without annotations for segmentation.

Results
Evaluationmetrics
To evaluate the performance of our nuclei segmentation
method, we use two different evaluation metrics: object-

Table 2 Composition of the multiple organ H&E stained histopathology image dataset (MOSID) which is divided into training and test
sets

Data Stained Images

Division Total Breast Kidney Liver Prostate Bladder Colon Stomach

Training set 16 4 4 4 4 - - -

Test set 14 2 2 2 2 2 2 2

Total 30 6 6 6 6 2 2 2
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-level metric and pixel-level metric. F1 score is used as the
representative evaluation object-level metric. F1 score is
defined as (1) where TP is true positive, FP is false positive,
and FN is false negative. Since F1 score is the harmonic
average of the precision, which is defined as (2), and recall,
which is defined as (3), F1 score is an ideal metric for
evaluating both precision and recall at the same time.

F1 score = 2TP
2TP + FP + FN

(1)

precision = TP
TP + FP

(2)

recall = TP
TP + FN

(3)

One of the well known pixel-level metrics is Dice’s
coefficient (DC) which is defined as (4) where X is the
segmentation result and Y is its corresponding ground
truth segmentation. Since this metric compares pixels
with pixels, it can be used to evaluate the quality of the
segmentation. Average Dice’s coefficient (ADC) can be
calculated by averaging all the DC values. In addition
Dice’s coefficient is also used for the criterion of F1 score
that determines true positives, false positives and false
negatives. Objects exceeding Dice’s coefficient value of 0.2
with the corresponding ground truth are determined as
true positives.

D(X,Y ) = 2
|X ∩ Y |

|X| + |Y | (4)

ADC is limited in evaluating the pixel-level segmenta-
tion performance. It is biased towards correctly predicted
results (true positives). In other words, false positive pix-
els and false negative pixels are completely ignored when
assessing the segmentation quality. As calculating the
number of false positives and false negatives is also impor-
tant for evaluating the segmentation quality, we use the
aggregated Jaccard index (AJI) which was proposed by
Neeraj Kumar et al. [20]. Algorithm 1 is used to compute
AJI.
AJI computes the number of intersection pixels and the

number of union pixels between all ground truth pixels
and segmented nuclei pixels. As AJI considers the number
of false positive pixels and false negative pixels, it lowers
the value of the results based on the errors.

Algorithm 1 Computing Aggregated Jaccard Index (AJI)
Input: A set of images with a combined set of annotated
nuclei Gi indexed by i, and a segmented set of nuclei Sk
indexed by k.
Output: Aggregated Jaccard Index A.
1: Initialize overall correct and union pixel counts: C ←

0;U ← 0
2: for Each ground truth nucleus Gi do
3: j ← argmaxk(|Gi ∩ Sk|/|Gi ∪ Sk|)
4: Update pixel counts: C ← C + |Gi ∩ Sj|;U ←

U + |Gi ∪ Sj|
5: Mark Sj used
6: end for
7: for Each segmented nucleus Sj do
8: If Sk is not used then U ← U + |Sk|
9: end for

10: A ← C/U

In our study, precision, recall, F1 score, Dice’s coeffi-
cient, and AJI are used as evaluation metrics for assessing
the segmentation performance.

Experimental setups
We evaluate the performance of our nuclei segmenta-
tion method using different experimental setups. NucSeg
refers to the experimental setup that uses Mask R-CNN,
color normalization, and multiple inference. NucSeg-P
denotes the experimental setup that does not use post-
processing (multiple inference). NucSeg-N represents the
experimental setup that uses post-processing but does not
use color normalization. NucSeg-NP denotes the exper-
imental setup which uses only Mask R-CNN. All the
experimental setups are summarized in Table 3.

Experiment 1 - MOSID
Before the quantitative analysis, a qualitative analysis was
performed. In Fig. 4, 6 histopathology images of differ-
ent organs are normalized using histopathology images of
stomach. For MOSID, we fix the input size of our U-Net
based DCGMMs to 500×500. The histopathology images
inMOSID show a relatively large color variation. The high
color variation in MOSID images is due to the difference
of organs. The images ofMOSID after color normalization
are clearer.

Table 3 Details of the experimental setups

Color Normalization (DCGMM) Nuclei Segmentation (Mask R-CNN) Post processing (Multiple-Inference)

NucSeg O O O

NucSeg-P O O X

NucSeg-N X O O

NucSeg-NP X O X
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Fig. 4 Top row shows original images of MOSID. Bottom row shows the same images after color normalization

For a fair performance comparison, we measure the
performance of our segmentation method and that of
baseline segmentation methods on MOSID in the same
way. The authors of the baseline methods randomly gen-
erated 5 different training sets and their corresponding
test sets. They used the training and test sets to mea-
sure performance of their segmentation methods. Like
the baseline authors, we also generate training and test
sets randomly. Both the training and test sets are used to
measure the overall performance of our method. In addi-
tion, We repeat our experiment 10 times and selected the
different training and test sets each time. Table 4 shows
the average and standard deviation of our results for the
performance comparison with the baseline methods.
Performance obtained in NucSeg-P which uses color

normalization is higher than that obtained in NucSeg-
NP which only uses Mask R-CNN. Also, the performance
obtained in NucSeg which uses both color normalization
and multiple inference post-processing is higher than that
obtained in NucSeg-N which uses only post-processing.
These results demonstrate that color normalization helps
properly train Mask R-CNN. In addition, the perfor-
mance in NucSeg-N is higher than that in NucSeg-NP,

and the performance in NucSeg is higher than that in
NucSeg-P. Both results demonstrate that post-processing
is beneficial. Comparing between color normalization and
multiple inference post-processing, it appears that post-
processing has more impact on the performance improve-
ment as NucSeg-N slightly outperforms NucSeg-P. When
both color normalization and multiple inference (Nuc-
Seg) are applied, all the performance scores of the metrics
(precision, recall, F1 score, AJI, and Dice’s coefficient)
increase, and the performance of our nuclei segmentation
method improves.
Our nuclei segmentation method outperforms existing

methods. Even in NucSeg-NP, which is the most basic
setup, our method outperforms most of the other exist-
ing methods. The results of our method are much better
than the results of CP [35] and Fiji [36], both of which are
based on feature engineering. In addition, all of our exper-
iments show that our method achieves better results than
CNN2 [13] and CNN3 [20], both of which use shallow
convolutional neural networks. As the baseline studies
did not provide the precision and recall of their meth-
ods, a direct comparison of their precision and recall
scores with ours is not possible. However, our method

Table 4 Performance of several nuclei segmentation methods on the multiple organ H&E stained histopathology image dataset
(MOSID)

Methods Precision Recall F1-Score ADC AJI

CP [35] N/A N/A 0.405 0.597 0.123

Fiji [36] N/A N/A 0.665 0.649 0.273

CNN2 [13] N/A N/A 0.754 0.693 0.348

CNN3 [20] N/A N/A 0.827 0.762 0.508

NB [22] 0.836 0.894 0.852 0.809 N/A

NucSeg 0.913±0.003 0.821±0.004 0.861±0.001 0.812±0.001 0.669±0.001

NucSeg-N 0.897±0.004 0.813±0.004 0.849±0.002 0.805±0.002 0.649±0.004

NucSeg-P 0.909±0.002 0.777±0.004 0.835±0.002 0.809±0.001 0.664±0.002

NucSeg-NP 0.899±0.004 0.777±0.005 0.828±0.002 0.701±0.002 0.647±0.005
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Fig. 5 Top row shows original images of BNS. Bottom row shows the same images after color normalization

obtained a much higher F1-score, which demonstrates
that our proposed method can achieve high performance
in object level segmentation. Also, our segmentation
method achieves higher AJI scores than existing meth-
ods. Higher AJI values represent a lower false positive to
false negative ratio. Finally, since NB [22] used U-Net to
segment nuclei in histopathology images which is domi-
nant convolutional neural network architecture, compar-
ing performance with NB [22] is more meaningful. In
terms of all the evaluation metrics except recall, our seg-
mentationmethod achieves higher scores onMOSID than
scores achieved by NB [22] which is the state-of-the-art
segmentation method.

Experiment 2 - BNS
As shown in Fig 5, 6 histopathology images from 6 dif-
ferent patients are normalized using the other patient
images. For BNS, we fix the input size of our U-Net based
DCGMMs to 512× 512. Comparing the first row of Fig. 4
with that of Fig. 5, the histopathology images in BNS have
much less color variation than the histopathology images
in MOSID. The changes of the MOSID and BNS images
after color normalization are also noticeably different.

Although there is a difference in degree of normalization,
the color variation in the normalized images from BNS is
smaller than in the original histopathology images.
To divide the BNS dataset into the training and test sets,

we use leave-one-patient-out cross validation, which is the
same evaluation strategy used in [19, 20]. As there are
images from 7 patients, we train Mask R-CNN on images
from 6 patients and test our nuclei segmentation method
on images from the remaining patient. All the final met-
ric scores tested on each patient are averaged and listed in
Table 5.
Multiple inference helps to boost the performance of

our nuclei segmentation method. However, color normal-
ization does not help to improve the segmentation perfor-
mance on BNS because the color variation of the images
in BNS is already small. Since the images in MOSID have
a large color variation and images in BNS have a small
color variation, color normalization played a major role in
improving the segmentation performance on MOSID and
played an insignificant role in enhancing the performance
on BNS. In MOSID, all the images are of different organs
and have a large color variation. However, BNS consists of
histopathology images of the same organ. In other words,

Table 5 Performance comparison of several nuclei segmentation methods and our nuclei segmentation method evaluated on the
breast cancer histopathology image dataset (BNS)

Methods Precision Recall F1-Score ADC AJI

PANGNET [18] 0.814 0.655 0.676 N/A N/A

FCN [18] 0.823 0.752 0.763 N/A N/A

DeconvNet [37] 0.864 0.773 0.805 N/A N/A

Ensemble [19] 0.741 0.900 0.802 N/A N/A

NB [22] 0.920 0.784 0.840 0.830 N/A

NucSeg 0.907 0.923 0.913 0.835 0.686

NucSeg-N 0.910 0.910 0.909 0.838 0.688

NucSeg-P 0.893 0.886 0.887 0.810 0.654

NucSeg-NP 0.912 0.889 0.899 0.818 0.665



Jung et al. BMC Biomedical Engineering            (2019) 1:24 Page 10 of 12

BNS has much less color variation than MODIS; thus,
Mask R-CNN can be trained on BNS without difficulty.
As demonstrated, our nuclei segmentation method out-

performs existing methods. There are several segmen-
tation methods that perform the segmentation task on
BNS. The overall results of our method and the seg-
mentation methods based on deep convolutional neural

network are shown in Table 5. As shown in Table 5,
our segmentation method achieves state-of-the-art per-
formance. Our method obtains better ADC scores and
F1-scores than NB [22], the state-of-the-art segmen-
tation method evaluated on BNS. This result shows
that our model obtains better segmentation performance
than NB.

Fig. 6 Several histopathology images of MOSID and BNS and their segmentation result images to which our segmentation method is applied. In the
segmentation result images, the yellow areas denote true positive pixels, red areas denote false positive pixels, and green areas denote false
negative pixels
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Discussion
Figure 6 shows several histopathology images and corre-
sponding segmentation result images to which our seg-
mentation method is applied. We use bladder and colon
images from MOSID and a breast image from BNS.
As shown, histopathology images become clearer after
applying color normalization. In addition, segmentation
result images of input images with and without color
normalization are also presented in Fig. 6. Yellow areas
denote true positive pixels, red areas denote false posi-
tive pixels, and green areas denote false negative pixels.
In other words, green and red indicate segmentation
errors.
For MOSID histopathology images, our method

achieves the best performance on bladder images and
the lowest performance on colon images. It is easier to
distinguish nuclei from the background in bladder images
than in colon images. In addition, we find inaccurate and
missing annotations. First, some ground truth annota-
tions of nuclei on the edges of histopathology images are
missing. Second, the criteria for making ground truth
annotations of nuclei for each histopathology image are
different. These inaccurate annotations result in lower
performance for some histopathology images.
Our segmentation method significantly outperforms

existing methods on BNS. However, its performance on
MOSID only slightly improves due to color normaliza-
tion. Since BNS histopathology images have a small color
variation, color normalization is not that helpful. For this
reason, we find that color normalization is only effective
when histopathology images have a large color variation.
Overall, more error areas are observed in the segmen-

tation result images without post-processing. Also, more
error areas are observed in the segmentation result images
of histopathology images to which color normalization
is not applied. As discussed in the “Results” subsection,
Fig. 6 intuitively shows that the segmentation images with
color normalization and post-processing are the best.

Conclusion
In this paper, we proposed a method for nuclei seg-
mentation in histopathology images. Mask R-CNN which
obtains state-of-the-art performance on the nuclei seg-
mentation task was used. Performance improvement due
to the U-Net based deep convolutional Gaussian mix-
ture color normalization model (DCGMM) showed that
color normalization enhances performance on datasets
containing histopathology images with large color vari-
ations. Furthermore, the multiple inference method
for post-processing improved the segmentation perfor-
mance on each test image. The performance compari-
son demonstrates that our nuclei segmentation method
is more robust than the state-of-the-art segmentation
methods.
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